Annals of Operations Research

, Volume 252, Issue 2, pp 365–382 | Cite as

Modeling and solving a real-life multi-skill shift design problem

  • Alex Bonutti
  • Sara Ceschia
  • Fabio De Cesco
  • Nysret Musliu
  • Andrea Schaerf
S.I. : PATAT 2014


In this work, we consider the shift design problem and we define a novel, complex formulation arising from practical cases. In addition, we propose a new search method based on a fast Simulated Annealing, that, differently from previous approaches, solves the overall problem as a single-stage procedure. The core of the method is a composite neighborhood that includes at the same time changes in the staffing of shifts, the shape of shifts, and the position of breaks. Finally, we present a statistically-principled experimental analysis on a set of instances obtained from real cases. Both instances and results are available on the web for future comparisons.


Shift design Workforce scheduling Simulated annealing Local search 



Nysret Musliu has been supported for this work by the Austrian Science Fund (FWF): P24814-N23.


  1. Aarts, E. H. L., & Korst, J. (1989). Simulated annealing and Boltzmann machines. New York: Wiley.Google Scholar
  2. Alfares, H. K. (2004). Survey, categorization, and comparison of recent tour scheduling literature. Annals of Operations Research, 127(1–4), 145–175.CrossRefGoogle Scholar
  3. Aykin, T. (1996). Optimal shift scheduling with multiple break windows. Management Science, 42, 591–603.CrossRefGoogle Scholar
  4. Aykin, T. (2000). A comparative evaluation of modelling approaches to the labour shift scheduling problem. European Journal of Operational Research, 125, 381–397.CrossRefGoogle Scholar
  5. Bechtold, S. E., & Jacobs, L. W. (1990). Implicit modelling of flexible break assignments in optimal shift scheduling. Management Science, 36(11), 1339–1351.CrossRefGoogle Scholar
  6. Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., & Slany, W. (2008). Scheduling breaks in shift plans for call centers. In Proceedings of The 7th international conference on the practice and theory of automated timetabling. Montreal, Canada.Google Scholar
  7. Beer, A., Gärtner, J., Musliu, N., Schafhauser, W., & Slany, W. (2010). An AI-based break-scheduling system for supervisory personnel. IEEE Intelligent Systems, 25(2), 60–73.CrossRefGoogle Scholar
  8. Bhulai, S., Koole, G., & Pot, A. (2008). Simple methods for shift scheduling in multiskill call centers. Manufacturing & Service Operations Management, 10(3), 411–420.CrossRefGoogle Scholar
  9. Birattari, M. (2004). The problem of tuning metaheuristics as seen from a machine learning perspective, PhD thesis. Belgium: Université Libre de Bruxelles.Google Scholar
  10. Černý, V. (1985). Thermodynamical approach to the traveling salesman problem: An efficient simulation algorithm. Journal of Optimization Theory and Applications, 45(l), 41–51.Google Scholar
  11. Côté, M.-C., Gendron, B., Quimper, C.-G., & Rousseau, L.-M. (2011). Formal languages for integer programming modeling of shift scheduling problems. Constraints, 16(1), 55–76.CrossRefGoogle Scholar
  12. Côté, M.-C., Gendron, B., & Rousseau, L.-M. (2011). Grammar-based integer programming models for multiactivity shift scheduling. Management Science, 57(1), 151–163.CrossRefGoogle Scholar
  13. Dantzig, G. B. (1954). A comment on Eddie’s traffic delays at toll booths. Operations Research, 2, 339–341.Google Scholar
  14. Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., & Slany, W. (2007). The minimum shift design problem. Annals of Operations Research, 155(1), 79–105.CrossRefGoogle Scholar
  15. Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., & Slany, W. (2010). A hybrid LS-CP solver for the shifts and breaks design problem. In M. J. Blesa, C. Blum, G. Raidl, A. Roli, & M. Sampels (Eds.), Hybrid metaheuristics (pp. 46–61). Berlin: Springer.CrossRefGoogle Scholar
  16. Di Gaspero, L., Gärtner, J., Musliu, N., Schaerf, A., Schafhauser, W., & Slany, W. (2013). Automated shift design and break scheduling. In S. A. Uyar, E. Ozcan, & N. Urquhart (Eds.), Automated scheduling and planning (pp. 109–127). Berlin: Springer.CrossRefGoogle Scholar
  17. Di Gaspero, L., & Schaerf, A. (2003). EasyLocal++: An object-oriented framework for flexible design of local search algorithms. Software-Practice and Experience, 33(8), 733–765.CrossRefGoogle Scholar
  18. Gärtner, J., Musliu, N., & Slany, W. (2004). A heuristic based system for generation of shifts with breaks. In Proceedings of the 24th SGAI international conference on innovative techniques and applications of artificial intelligence, Cambridge.Google Scholar
  19. Hammersley., J. M., Handscomb, D. C., & Weiss, G. (1965). Monte Carlo methods. Physics Today, 18, 55.CrossRefGoogle Scholar
  20. Johnson, D. S., Aragon, C. R., McGeoch, L. A., & Schevon, C. (1989). Optimization by simulated annealing: An experimental evaluation; part I, graph partitioning. Operations Research, 37(6), 865–892.CrossRefGoogle Scholar
  21. Kirkpatrick, S., Gelatt, D., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 220, 671–680.CrossRefGoogle Scholar
  22. Musliu, N., Schaerf, A., & Slany, W. (2004). Local search for shift design. European Journal of Operational Research, 153(1), 51–64.CrossRefGoogle Scholar
  23. Quimper, C.-G., & Rousseau, L.-M. (2010). A large neighbourhood search approach to the multi-activity shift scheduling problem. Journal of Heuristics, 16(3), 373–391.CrossRefGoogle Scholar
  24. Rekik, M., Cordeau, J.-F., & Soumis, F. (2010). Implicit shift scheduling with multiple breaks and work stretch duration restrictions. Journal of Scheduling, 13, 49–75.CrossRefGoogle Scholar
  25. Rekik, M., Cordeau, J.-F., & Soumis, F. (2004). Using benders decomposition to implicitly model tour scheduling. Annals of Operations Research, 128(1–4), 111–133.CrossRefGoogle Scholar
  26. Tellier, P., & White, G. (2006). Generating personnel schedules in an industrial setting using a tabu search algorithm. In E. K. Burke & H. Rudova (Eds.), In The 5th international conference on the practice and theory of automated timetabling (pp. 293–302).Google Scholar
  27. Thompson, G. (1995). Improved implicit modeling of the labor shift scheduling problem. Management Science, 41(4), 595–607.CrossRefGoogle Scholar
  28. Urli, T. (2013). json2run: A tool for experiment design & analysis. arXiv:1305.1112.
  29. van Laarhoven, P. J. M., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. New York: Kluwer.CrossRefGoogle Scholar
  30. Widl, M., & Musliu, N. (2014). The break scheduling problem: Complexity results and practical algorithms. Memetic Computing, 6(2), 97–112.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.EasyStaff s.r.l.CampoformidoItaly
  2. 2.DPIAUniversity of UdineUdineItaly
  3. 3.DBAITechnische UniversitätViennaAustria

Personalised recommendations