Advertisement

Annals of Operations Research

, Volume 249, Issue 1–2, pp 163–174 | Cite as

Optimal scheduling for replacing perimeter guarding unmanned aerial vehicles

  • Oleg Burdakov
  • Jonas Kvarnström
  • Patrick Doherty
S.I.: Pardalos60

Abstract

Guarding the perimeter of an area in order to detect potential intruders is an important task in a variety of security-related applications. This task can in many circumstances be performed by a set of camera-equipped unmanned aerial vehicles (UAVs). Such UAVs will occasionally require refueling or recharging, in which case they must temporarily be replaced by other UAVs in order to maintain complete surveillance of the perimeter. In this paper we consider the problem of scheduling such replacements. We present optimal replacement strategies and justify their optimality.

Keywords

Scheduling problem Optimal replacement strategies Perimeter guarding Unmanned aerial vehicles 

Notes

Acknowledgments

This work is partially supported by the EU FP7 project SHERPA (grant agreement 600958), the Vinnova NFFP6 Project 2013-01206, the Swedish Foundation for Strategic Research (CUAS Project), the Swedish Research Council (VR) Linnaeus Center CADICS, and the ELLIIT network organization for Information and Communication Technology. We thank Alexander Kleiner for initial discussions concerning the topics in this paper.

References

  1. Acevedo, J. J., Arrue, B. C., Maza, I., & Ollero, A. (2013). Cooperative large area surveillance with a team of aerial mobile robots for long endurance missions. Journal of Intelligent and Robotic Systems, 70(1–4), 329–345.CrossRefGoogle Scholar
  2. Agmon, N., Kaminka, G. A., & Kraus, S. (2011). Multi-robot adversarial patrolling: Facing a full-knowledge opponent. Journal of Artificial Intelligence Research, 42, 887–916.Google Scholar
  3. Agmon, N., Kraus, S., Kaminka, G. (2008). Multi-robot perimeter patrol in adversarial settings. In IEEE International Conference on Robotics and Automation (ICRA), pp. 2339–2345.Google Scholar
  4. Barnes, J., Wiley, V., Moore, J., & Ryer, D. (2004). Solving the aerial fleet refueling problem using group theoretic tabu search. Mathematical and Computer Modelling, 39(6–8), 617–640. doi: 10.1016/S0895-7177(04)90544-4.CrossRefGoogle Scholar
  5. Bullo, F., Cortés, J., & Martínez, S. (2009). Distributed control of robotic networks. Applied Mathematics Series: Princeton University Press.CrossRefGoogle Scholar
  6. Choset, H. (2001). Coverage for robotics—A survey of recent results. Annals of Mathematics and Artificial Intelligence, 31(1–4), 113–126.CrossRefGoogle Scholar
  7. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2009). Introduction to algorithms (3rd ed.). Cambridge, Massachusetts, London, England: MIT press.Google Scholar
  8. Derenick, J., Michael, N., Kumar, V. (2011). Energy-aware coverage control with docking for robot teams. In International Conference on Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ, pp. 3667–3672, doi: 10.1109/IROS.2011.6094977.
  9. Huisman, R. (2014). Scheduling the refuelling activities of multiple heterogeneous autonomous mobile robots. Master’s thesis, Delft University of Technology.Google Scholar
  10. Jin, Z., Shima, T., & Schumacher, C. (2006). Optimal scheduling for refueling multiple autonomous aerial vehicles. IEEE Transactions on Robotics, 22(4), 682–693. doi: 10.1109/TRO.2006.878793.CrossRefGoogle Scholar
  11. Kim, J., Song, B., & Morrison, J. R. (2013). On the scheduling of systems of UAVs and fuel service stations for long-term mission fulfillment. Journal of Intelligent and Robotic Systems, 70(1–4), 347–359. doi: 10.1007/s10846-012-9727-0.CrossRefGoogle Scholar
  12. Lazebnik, S. (2001). Visibility-based pursuit-evasion in three-dimensional environments. Technical report: University of Illinois at Urbana-Champaign.Google Scholar
  13. Litus, Y., Zebrowski, P., & Vaughan, R. (2009). A distributed heuristic for energy-efficient multirobot multiplace rendezvous. IEEE Transactions on Robotics, 25(1), 130–135. doi: 10.1109/TRO.2008.2007459.CrossRefGoogle Scholar
  14. Mathew, N., Smith, S. L., & Waslander, S. L. (2015). Multirobot rendezvous planning for recharging in persistent tasks. IEEE Transactions on Robotics, 31(1), 128–142.CrossRefGoogle Scholar
  15. Molyboha, A., & Zabarankin, M. (2012). Stochastic optimization of sensor placement for diver detection. Operations Research, 60(2), 292–312. doi: 10.1287/opre.1110.1032.CrossRefGoogle Scholar
  16. Shermer, T. (1992). Recent results in art galleries. Proceedings of the IEEE, 80(9), 1384–1399.CrossRefGoogle Scholar
  17. Suzuki, I., & Yamashita, M. (1992). Searching for a mobile intruder in a polygonal region. SIAM Journal on Computing, 21(5), 863–888. doi: 10.1137/0221051.CrossRefGoogle Scholar
  18. Suzuki, K. A. O., Kemper Filho, P., & Morrison, J. R. (2012). Automatic battery replacement system for UAVs: Analysis and design. Journal of Intelligent and Robotic Systems, 65(1–4), 563–586. doi: 10.1007/s10846-011-9616-y.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Oleg Burdakov
    • 1
  • Jonas Kvarnström
    • 2
  • Patrick Doherty
    • 2
  1. 1.Department of MathematicsLinköping UniversityLinköpingSweden
  2. 2.Department of Computer and Information ScienceLinköping UniversityLinköpingSweden

Personalised recommendations