Annals of Operations Research

, Volume 238, Issue 1–2, pp 637–649 | Cite as

Hybrid constructive heuristics for the critical node problem

  • Bernardetta Addis
  • Roberto Aringhieri
  • Andrea Grosso
  • Pierre Hosteins
Note

Abstract

We consider the Critical Node Problem: given an undirected graph and an integer number K,  at most K nodes have to be deleted from the graph in order to minimize a connectivity measure in the residual graph. We combine the basic steps used in common greedy algorithms with some flavour of local search, in order to obtain simple hybrid heuristic algorithms. The obtained algorithms are shown to be effective, delivering improved performances (solution quality and speed) with respect to known greedy algorithms and other more sophisticated state of the art methods.

Keywords

Critical node problem Graph fragmentation Hybrid heuristics 

References

  1. Addis, B., Di Summa, M., & Grosso, A. (2013). Removing critical nodes from a graph: Complexity results and polynomial algorithms for the case of bounded treewidth. Discrete Applied Mathematics, 16–17, 2349–2360.CrossRefGoogle Scholar
  2. Aringhieri, R., Grosso, A., Hosteins, P., & Scatamacchia, R. (2015). VNS solutions for the critical node problem. In Proceedings of the VNS’14 conference. Electronic notes in discrete mathematics (Vol. 47, pp. 37–44).Google Scholar
  3. Arulselvan, A., Commander, C. W., Elefteriadou, L., & Pardalos, P. M. (2009). Detecting critical nodes in sparse graphs. Computers & Operations Research, 36, 2193–2200.CrossRefGoogle Scholar
  4. Boginski, V., & Commander, C. W. (2009). Identifying critical nodes in protein–protein interaction networks. In S. Butenko, W. A. Chaovalitwongse, & P. M. Pardalos (Eds.), Clustering challenges in biological networks (pp. 153–168). Singapore: World Scientific Publishing.CrossRefGoogle Scholar
  5. Borgatti, S. P. (2006). Identifying sets of key players in a network. Computational and Mathematical Organization Theory, 12, 21–34.CrossRefGoogle Scholar
  6. Brandes, U. (2001). A faster algorithm for betweenness centrality. Journal of Mathematical Sociology, 25, 163–177.CrossRefGoogle Scholar
  7. Di Summa, M., Grosso, A., & Locatelli, M. (2011). The critical node problem over trees. Computers and Operations Research, 38, 1766–1774.CrossRefGoogle Scholar
  8. Di Summa, M., Grosso, A., & Locatelli, M. (2012). Branch and cut algorithms for detecting critical nodes in undirected graphs. Computational Optimization and Applications, 53, 649–680.CrossRefGoogle Scholar
  9. Dinh, T., Xuan, Y., Thai, M., Pardalos, P., & Znati, T. (2012). On new approaches of assessing network vulnerability: Hardness and approximation. IEEE/ACM Transactions on Networking, 20, 609–619.CrossRefGoogle Scholar
  10. Dinh, T. N., & Thai, M. T. (2011). Precise structural vulnerability assessment via mathematical programming. In MILCOM 2011–2011 IEEE military communications conference (pp. 1351–1356).Google Scholar
  11. Dolan, E., & Moré, J. (2002). Benchmarking optimization software with performance profiles. Mathematical Programming, 91(2), 201–13.CrossRefGoogle Scholar
  12. Edalatmanesh, M. (2013). Heuristics for the critical node detection problem in large complex networks. Ph.D. thesis, Faculty of Mathematics and Science, Brock University, St. Catharines, ON.Google Scholar
  13. Golden, B. L., & Shier, D. R. (Eds.) (2014). Network interdiction applications and extensions. Virtual Issue on Networks. http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1097-0037/homepage/virtual_issue_-_network_interdiction_applications_and_extensions.htm.
  14. Hopcroft, J., & Tarjan, R. (1973). Algorithm 447: Efficient algorithms for graph manipulation. Communications of the ACM, 16(6), 372–378.CrossRefGoogle Scholar
  15. Papadimitriou, C., & Steiglitz, K. (1982). Combinatorial optimization: Algorithms and complexity. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
  16. Shen, S., & Smith, J. (2012). Polynomial-time algorithms for solving a class of critical node problems on trees and series–parallel graphs. Networks, 60(2), 103–119. doi: 10.1002/net.20464.Google Scholar
  17. Shen, S., Smith, J., & Goli, R. (2012). Exact interdiction models and algorithms for disconnecting networks via node deletions. Discrete Optimization, 9, 172–88.CrossRefGoogle Scholar
  18. Ventresca, M. (2012). Global search algorithms using a combinatorial unranking-based problem representation for the critical node detection problem. Computers & Operations Research, 39, 2763–2775.CrossRefGoogle Scholar
  19. Ventresca, M., & Aleman, D. (2014). A derandomized approximation algorithm for the critical node detection problem. Computers and Operations Research, 43, 261–270.CrossRefGoogle Scholar
  20. Ventresca, M., & Aleman, D. (2015). Efficiently identifying critical nodes in large complex networks. Computational Social Networks, 2(1), 6. doi: 10.1186/s40649-015-0010-y.CrossRefGoogle Scholar
  21. Veremyev, A., Boginski, V., & Pasiliao, E. (2014). Exact identification of critical nodes in sparse networks via new compact formulations. Optimization Letters, 8, 1245–1259.CrossRefGoogle Scholar
  22. Veremyev, A., Prokopyev, O., & Pasiliao, E. (2014). An integer programming framework for critical elements detection in graphs. Journal of Combinatorial Optimization, 28, 233–273.CrossRefGoogle Scholar
  23. Veremyev, A., Prokopyev, O., & Pasiliao, E. (2015). Critical nodes for distance-based connectivity and related problems in graphs. Networks, 66, 170–195.CrossRefGoogle Scholar
  24. Walteros, J., & Pardalos, P. (2012). Selected topics in critical element detection. In N. J. Daras (Ed.), Applications of mathematics and informatics in military science, Springer optimization and its applications (Vol. 71, pp. 9–26). New York: Springer. doi: 10.1007/978-1-4614-4109-0_2.CrossRefGoogle Scholar
  25. Wollmer, R. (1964). Removing arcs from a network. Operations Research, 12, 934–940.CrossRefGoogle Scholar
  26. Wood, R. K. (1993). Deterministic network interdiction. Mathematical and Computer Modelling, 17, 1–18.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Bernardetta Addis
    • 1
  • Roberto Aringhieri
    • 2
  • Andrea Grosso
    • 2
  • Pierre Hosteins
    • 2
  1. 1.LORIA (CNRS UMR 7503)Université de Lorraine, INRIA Nancy Grand EstVandoeuvre-lès-NancyFrance
  2. 2.Dipartimento di InformaticaUniversità degli Studi di TorinoTurinItaly

Personalised recommendations