Annals of Operations Research

, Volume 238, Issue 1–2, pp 179–198 | Cite as

Self-regenerating environmental absorption efficiency and the \(\varvec{ soylent~green~scenario}\)

  • Fouad El OuardighiEmail author
  • Hassan Benchekroun
  • Dieter Grass


We consider a stock pollution problem where the biosphere can transform from a sink to a source of pollution in the presence of self-regenerating environmental absorption efficiency. We examine the problem of controlling pollution and the capacity of the biosphere to absorb pollution: the regulator can mitigate emissions and can invest to build-up the absorption capacity of pollution sinks. We examine conditions under which both measures, mitigation and absorption capacity investments, are substitute (complement) to each other, and the relative extent to which environmental self-regenerating capabilities affect these conditions. We also exhibit the possibility of an oscillatory approach to the steady state. Particular attention is paid to the situation where the social planner is impatient.


Pollution Environmental absorption efficiency Self-regeneration capabilities Discounting rate 



This research was supported by the Centre for Research of ESSEC Business School, the Canadian Social Sciences and Humanities Research Council (SSHRC), the Fonds Québécois de la Recherche sur la Société et la Culture [Quebec Fund of Cultural and Societal Research] (FQRSC), and the Austrian Science Fund (FWF) under Grant No. P23084-N13. The paper was written while the first author was visiting the department of Economics of McGill University in Canada, whose hospitality is gratefully acknowledged. The authors are grateful to one anonymous reviewer for constructive comments and suggestions on a previous draft. The usual disclaimer applies.


  1. Ayong Le Kama, A., Pommeret, A., & Prieur, F. (2014). Optimal emission policy under the risk of irreversible pollution. Journal of Public Economic Theory, 16(6), 959–980.CrossRefGoogle Scholar
  2. Barnosky, A. D., Hadly, E. A., Bascompte, J., Berlow, E. L., Brown, J. H., Fortelius, M., et al. (2012). Approaching a state shift in Earth’s biosphere. Nature, 486, 52–58.CrossRefGoogle Scholar
  3. Benchekroun, H., & Long, N. V. (2014). Do increases in risk mitigate the tragedy of the commons? Strategic Behavior and the Environment, 4(1), 1–14.CrossRefGoogle Scholar
  4. Board on Atmospheric Sciences and Climate. (2011). Climate stabilization targets: Emissions, concentrations, and impacts over decades to millennia. Washington, DC: The National Academies Press.Google Scholar
  5. Boucekkine, R., Pommeret, A., & Prieur, F. (2013a). Optimal regime switching and threshold effects. Journal of Economic Dynamics and Control, 37(12), 2979–2997.CrossRefGoogle Scholar
  6. Boucekkine, R., Pommeret, A., & Prieur, F. (2013b). Technological vs ecological switch and the environmental Kuznets curve. American Journal of Agricultural Economics, 95(2), 252–260.CrossRefGoogle Scholar
  7. Canadell, J. G., & Raupach, M. R. (2008). Managing forests for climate change. Science, 320(5882), 1456–1457.CrossRefGoogle Scholar
  8. Canadell, J. G., Le Quéré, C., Raupach, M. R., Field, C. B., Buitenhuis, E. T., Ciais, P., et al. (2007). Contributions to accelerating atmospheric \(\text{ CO }_{2}\) growth from economic activity, carbon intensity, and efficiency of natural sinks. Proceedings of the National Academy of Sciences, 104(47), 18866–18870.CrossRefGoogle Scholar
  9. Chevé, M. (2000). Irreversibility of pollution accumulation. Environmental and Resource Economics, 16(1), 93–104.CrossRefGoogle Scholar
  10. Cox, P. M., Betts, R. A., Jones, C., Spall, S. A., & Totterdell, I. (2000). Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model. Nature, 408, 184–187.CrossRefGoogle Scholar
  11. Cramer, W., Bondeau, A., Woodward, F. I., Prentice, I. C., Betts, R. A., Brovkin, V., et al. (2001). Global response of terrestrial ecosystem structure and function to \(\text{ CO }_{2}\) and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7(4), 357–373.CrossRefGoogle Scholar
  12. Dockner, E. (1985). Local stability in optimal control problems with two state variables. In G. Feichtinger (Ed.), Optimal control theory and economic analysis (Vol. 2). Amsterdam: North Holland.Google Scholar
  13. Dockner, E., & Feichtinger, G. (1991). On the optimality of limit cycles in dynamic economic systems. Journal of Economics, 53(1), 31–50.CrossRefGoogle Scholar
  14. El Ouardighi, F., Benchekroun, H., & Grass, D. (2014). Controlling pollution and environmental absorption capacity. Annals of Operations Research, 220(1), 111–134.CrossRefGoogle Scholar
  15. FAO (Food and Agriculture Organization). (2011). Global forest land-use change from 1990 to 2005.
  16. Farzin, Y. H. (1996). Optimal pricing of environmental and natural resource use with stock externalities. Journal of Public Economics, 62(2), 31–57.CrossRefGoogle Scholar
  17. Grass, D. (2012). Numerical computation of the optimal vector field: Exemplified by a fishery model. Journal of Economic Dynamics and Control, 36(10), 1626–1658.CrossRefGoogle Scholar
  18. Grass, D., Caulkins, J. P., Feichtinger, G., Tragler, G., & Behrens, D. A. (2008). Optimal control of nonlinear processes with applications in drugs, corruption, and terror. Heidelberg: Springer.CrossRefGoogle Scholar
  19. Holling, C. (1973). Resilience and stability of ecological systems. Annual Review of Ecology and Systematics, 4, 1–23.CrossRefGoogle Scholar
  20. IPCC (Intergovernmental Panel on Climate Change). (2007). Fourth IPCC assessment report: Climate change 2007. Cambridge: Cambridge University Press.Google Scholar
  21. Joos, F., Prentice, I. C., Sitch, S., Meyer, R., Hooss, G., Plattner, G.-K., et al. (2001). Global warming feedbacks on terrestrial carbon uptake under the Intergovernmental Panel on Climate Change (IPCC) emission scenarios. Global Biogeochemical Cycles, 15(4), 891–907.CrossRefGoogle Scholar
  22. Keeler, E., Spence, M., & Zeckhauser, R. (1972). The optimal control of pollution. Journal of Economic Theory, 4(1), 19–34.CrossRefGoogle Scholar
  23. Lenton, T. M., Williamson, M. S., Edwards, N. R., Marsh, R., Price, A. R., Ridgwell, A. J., Shepherd, J. G., Cox, S. J., & The GENIE team. (2006). Millennial timescale carbon cycle and climate change in an efficient Earth system model. Climate Dynamics, 26(7/8), 687–711.Google Scholar
  24. Michel, P., & Rotillon, G. (1995). Disutility of pollution and endogenous growth. Environmental and Resource Economics, 6, 279–300.Google Scholar
  25. Moser, E., Seidl, A., & Feichtinger, G. (2013). History-dependence in production-pollution-trade-off models: a multi-stage approach. Annals of Operations Research, 1–23. doi: 10.1007/s10479-013-1349-9.
  26. Pan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., et al. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988–993.Google Scholar
  27. Piao, S. L., Ciais, P., Friedlingstein, P., Peylin, P., Reichstein, M., Luyssaert, S., et al. (2008). Net carbon dioxide losses of northern ecosystems in response to autumn warming. Nature, 451, 49–52.CrossRefGoogle Scholar
  28. Prieur, F. (2009). The environmental Kuznets curve in a world of irreversibility. Economic Theory, 40(1), 57–90.CrossRefGoogle Scholar
  29. Prieur, F., Tidball, M., & Withagen, C. (2013). Optimal emission-extraction policy in a world of scarcity and irreversibility. Resource and Energy Economics, 35(4), 637–658.CrossRefGoogle Scholar
  30. Schaphoff, S., Lucht, W., Gerten, D., Sitch, S., Cramer, W., & Prentice, I. C. (2006). Terrestrial biosphere carbon storage under alternative climate projections. Climatic Change, 74(1/3), 97–122.CrossRefGoogle Scholar
  31. Scheffer, M. (1997). The ecology of shallow lakes. Dordrecht: Kluwer.Google Scholar
  32. Stern, N. (2006). Stern review report on the economics of climate change. London: HM Treasury.Google Scholar
  33. Tahvonen, O., & Withagen, C. (1996). Optimality of irreversible pollution accumulation. Journal of Economic Dynamics and Control, 20(9), 1775–1795.CrossRefGoogle Scholar
  34. UNFCCC (United Nations Framework Convention on Climate Change). (2008). Reducing emissions from deforestation in developing countries: Approaches to stimulate action. 10 December (UNFCCC/SBSTA/2008/L.23, Paragraphs 8 and 9).Google Scholar
  35. Wald, M. L. (2013). New efforts to quantify ‘social cost’ of pollution. New York Times, June 18.Google Scholar
  36. Zhao, M., & Running, S. W. (2010). Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science, 329, 940–943.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Fouad El Ouardighi
    • 1
    Email author
  • Hassan Benchekroun
    • 2
  • Dieter Grass
    • 3
  1. 1.ESSEC Business SchoolCergy PontoiseFrance
  2. 2.McGill UniversityMontrealCanada
  3. 3.Vienna University of TechnologyViennaAustria

Personalised recommendations