Annals of Operations Research

, Volume 249, Issue 1–2, pp 17–37 | Cite as

On robust clusters of minimum cardinality in networks

Article

Abstract

This paper studies two clique relaxation models, k-blocks and k-robust 2-clubs, used to describe structurally cohesive clusters with good robustness and reachability properties. The minimization version of the two problems are shown to be hard to approximate for \(k \ge 3\) and \(k \ge 4\), respectively. Integer programming formulations are proposed and a polyhedral study is presented. The results of sample numerical experiments on several graph instances are also reported.

Keywords

Clique relaxations Connectivity k-Block k-Robust s-club  Structural cohesion 

References

  1. Alimonti, P., & Kann, V. (2000). Some APX-completeness results for cubic graphs. Theoretical Computer Science, 237, 123–134.CrossRefGoogle Scholar
  2. Amini, O., Peleg, D., Pérennes, S., Sau, I., & Saurabh, S. (2012). On the approximability of some degree-constrained subgraph problems. Discrete Applied Mathematics, 160, 1661–1679.CrossRefGoogle Scholar
  3. Balasundaram, B., Butenko, S., & Trukhanov, S. (2005). Novel approaches for analyzing biological networks. Journal of Combinatorial Optimization, 10, 23–39.CrossRefGoogle Scholar
  4. Chartrand, G., Kaugars, A., & Lick, D. R. (1972). Critically \(n\)-connected graphs. Proceedings of the American Mathematical Society, 32, 63–68.Google Scholar
  5. Chen, Y. P., Liestman, A. L., & Liu, J. (2005). Clustering algorithms for ad hoc wireless networks. In Y. Pan & Y. Xiao (Eds.), Ad hoc and sensor networks, wireless networks and mobile computing (pp. 145–164). New York: Nova Science Publishers.Google Scholar
  6. COLOR02/03/04: Graph Coloring and its Generalizaions. http://mat.gsia.cmu.edu/COLOR03/. Accessed August 2015
  7. Diestel, R. (2010). Graph theory (4th ed.). Heidelberg: Springer.Google Scholar
  8. Dimacs (1995) Cliques, coloring, and satisfiability: Second dimacs implementation challenge. http://dimacs.rutgers.edu/Challenges/. Accessed August 2015
  9. Dimacs (2011) Graph partitioning and graph clustering: Tenth dimacs implementation challenge. http://www.cc.gatech.edu/dimacs10/index.shtml. Accessed August 2015
  10. Erdös, P., & Rényi, A. (1959). On random graphs. Publicationes Mathematicae (Debrecen), 6, 290–297.Google Scholar
  11. Faudree, R. J., Gould, R. J., & Powell, J. S. (2012). Property \(P_{d, m}\) and efficient design of reliable networks. Networks, 60(3), 167–178.CrossRefGoogle Scholar
  12. Feige, U. (2003). Vertex cover is hardest to approximate on regular graphs. Technical report MCS 03-15, Weizmann InstituteGoogle Scholar
  13. FICO\(^{{\rm TM}}\). (2014). Xpress Optimization Suite 7.7. http://www.fico.com. Accessed August 2015
  14. Kirousis, L. M., Serna, M., & Spirakis, P. (1993). Parallel complexity of the connected subgraph problem. SIAM Journal on Computing, 22, 573–586.CrossRefGoogle Scholar
  15. Liaw, S.-C., & Chang, G. J. (1998). Generalized diameters and Rabin numbers of networks. Journal of Combinatorial Optimization, 2(4), 371–384.CrossRefGoogle Scholar
  16. Luce, R., & Perry, A. (1949). A method of matrix analysis of group structure. Psychometrika, 14, 95–116.CrossRefGoogle Scholar
  17. Ma, C., Kim, D., Wang, Y., Wang, W., Sohaee, N., & Wu, W. (2010). Hardness of \(k\)-vertex-connected subgraph augmentation problem. Journal of Combinatorial Optimization, 20(3), 249–258.CrossRefGoogle Scholar
  18. Matula, D. W. (1978). \(k\)-Blocks and ultrablocks in graphs. Journal of Combinatorial Theory, Series B, 24, 1–13.CrossRefGoogle Scholar
  19. Moody, J., & White, D. R. (2003). Structural cohesion and embeddedness: A hierarchical concept of social groups. American Sociological Review, 68, 103–127.CrossRefGoogle Scholar
  20. Papadimitriou, C. H., & Yannakakis, M. (1991). Optimization, approximation, and complexity classes. Journal of Computer and System Sciences, 43(3), 425–440.CrossRefGoogle Scholar
  21. Pattillo, J., Youssef, N., & Butenko, S. (2013). On clique relaxation models in network analysis. European Journal of Operational Research, 226, 9–18.CrossRefGoogle Scholar
  22. Raghavan, S. (1995). Formulations and algorithms for network design problems with connectivity requirements. PhD thesis, Massachusetts Institute of TechnologyGoogle Scholar
  23. Raz, R., & Safra, S. (1997). A sub-constant error-probability low-degree test, and a sub-constant error-probability pcp characterization of NP. In Proceedings of the 29th ACM symposium on theory of computing, El Paso (pp. 475–484)Google Scholar
  24. Vazirani, V. V. (2001). Approximation algorithms. New York: Springer.Google Scholar
  25. Veremyev, A., Prokopyev, O. A., Boginski, V., & Pasiliao, E. L. (2014). Finding maximum subgraphs with relatively large vertex connectivity. European Journal of Operational Research, 239(2), 349–362.CrossRefGoogle Scholar
  26. Veremyev, A., & Boginski, V. (2012). Robustness and strong attack tolerance of low-diameter networks. Dynamics of Information Systems: Mathematical Foundations. Springer Proceedings in Mathematics & Statistics, 20, 137–156.Google Scholar
  27. Veremyev, A., & Boginski, V. (2012). Identifying large robust network clusters via new compact formulations of maximum \(k\)-club problems. European Journal of Operational Research, 218, 316–326.CrossRefGoogle Scholar
  28. Verma, A., Buchanan, A., & Butenko, S. (2015). Solving the maximum clique and vertex coloring problems on very large sparse networks. INFORMS Journal on Computing, 27, 164–177.CrossRefGoogle Scholar
  29. Yin, J.-H., Li, J.-S., Chen, G.-L., & Zhong, C. (2005). On the fault-tolerant diameter and wide diameter of \(\omega \)-connected graphs. Networks, 45(2), 88–94.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Industrial and Systems EngineeringTexas A&M UniversityCollege StationUSA

Personalised recommendations