Annals of Operations Research

, Volume 246, Issue 1–2, pp 167–179 | Cite as

The 1-Center and 1-Highway problem revisited

  • J. M. Díaz-Báñez
  • M. Korman
  • P. Pérez-Lantero
  • I. Ventura


In this paper we extend the Rectilinear 1-center problem as follows: given a set \(S\) of \(n\) demand points in the plane, simultaneously locate a facility point \(f\) and a rapid transit line (i.e. highway) \(h\) that together minimize the expression \(\max _{p\in S}T_{h}(p,f)\), where \(T_{h}(p,f)\) denotes the travel time between \(p\) and \(f\). A point of \(S\) uses \(h\) to reach \(f\) if \(h\) saves time: every point \(p\in S\) moves outside \(h\) at unit speed under the \(L_1\) metric, and moves along \(h\) at a given speed \(v>1\). We consider two types of highways: (1) a turnpike in which the demand points can enter/exit the highway only at the endpoints; and (2) a freeway problem in which the demand points can enter/exit the highway at any point. We solve the location problem for the turnpike case in \(O(n^2)\) or \(O(n\log n)\) time, depending on whether or not the highway’s length is fixed. In the freeway case, independently of whether the highway’s length is fixed or not, the location problem can be solved in \(O(n\log n)\) time.


Geometric optimization Facility location Time metric Rectilinear 1-center problem 



J. M. Díaz-Báñez, P. Pérez-Lantero and I. Ventura were partially supported by the project FEDER MEC MTM2009-08652. J. M. Díaz-Báñez, M. Korman and I. Ventura were partially supported by ESF EUROCORES programme EuroGIGA, CRP ComPoSe: grant EUI-EURC-2011-4306. M. Korman was partially supported by the Secretary for Universities and Research of the Ministry of Economy and Knowledge of the Government of Catalonia and the European Union. P. Pérez-Lantero was partially supported by project Millennium Nucleus Information and Coordination in Networks ICM/FIC RC130003 (Chile).


  1. Abellanas, M., Hurtado, F., Sacristán, V., Icking, C., Ma, L., Klein, R., et al. (2003). Voronoi diagram for services neighboring a highway. Information Processing Letters, 86(5), 283–288.CrossRefGoogle Scholar
  2. Ahn, H.-K., Alt, H., Asano, T., Bae, S. W., Brass, P., Cheong, O., et al. (2009). Constructing optimal highways. International Journal of Foundations of Computer Science, 20(1), 3–23.CrossRefGoogle Scholar
  3. Aichholzer, O., Aurenhammer, F., & Palop, B. (2004). Quickest paths, straight skeletons, and the city voronoi diagram. Discrete & Computational Geometry, 31(1), 17–35.CrossRefGoogle Scholar
  4. Aloupis, G., Cardinal, J., Collette, S., Hurtado, F., Langerman, S., O’Rourke, J., et al. (2010). Highway hull revisited. Computational Geometry & Theoretical Applications, 43(2), 115–130.CrossRefGoogle Scholar
  5. Bae, S. W., Korman, M. & Tokuyama, T. (2009a). All farthest neighbors in the presence of highways and obstacles. In Proceedings of the 3rd international workshop on algorithms and computation, WALCOM’09, Heidelberg, pp 71–82.Google Scholar
  6. Bae, S. W., Kim, J.-H., & Chwa, K.-Y. (2009b). Optimal construction of the city voronoi diagram. International Journal of Computational Geometry & Applications, 19(2), 95–117.Google Scholar
  7. Battaudatta, R., & Rajan, S. P. (1988). Mixed planar/network facility location problems. Computers & Operations Research, 15, 61–67.CrossRefGoogle Scholar
  8. Bespamyatnikh, S., & Kirkpatrick, D. G. (1999). Rectilinear 2-center problems. In Proceedings of 11th Canadian conference on computational geometry, pp. 68–71.Google Scholar
  9. Bespamyatnikh, S., & Segal, M. (1999). Rectilinear static and dynamic discrete 2-center problems. In Proceedings of the 6th international workshop on algorithms and data structures, WADS ’99, London, pp. 276–287.Google Scholar
  10. Cardinal, J., Collette, S., Hurtado, F., Langerman, S., & Palop, B. (2008). Optimal location of transportation devices. Computational Geometry & Theoretical Applications, 41, 219–229.CrossRefGoogle Scholar
  11. Carrizosa, E., & Rodríguez-Chía, A. M. (1997). Weber problems with alternative transportation systems. European Journal of Operational Research, 97(1), 87–93.CrossRefGoogle Scholar
  12. Díaz-Báñez, J. M., Korman M., Pérez-Lantero, P., & Ventura, I. (2011). The 1-center and 1-highway problem. In A. Márquez, P. Ramos, & J. Urrutia (Eds.), EGC, Volume 7579 of LNCS, pp. 155–165. Berlin: Springer.Google Scholar
  13. Díaz-Báñez, J. M., Korman, M., Pérez-Lantero, P., & Ventura, I. (2013a). The 1-median and 1-highway problem. European Journal of Operational Research, 225(3), 552–557.Google Scholar
  14. Díaz-Báñez, J. M., Korman, M., Pérez-Lantero, P., & Ventura, I. (2013b). Locating a single facility and a high-speed line. European Journal of Operational Research, 236(1), 69–77.Google Scholar
  15. Díaz-Báñez, J. M., Mesa, J. A., & Schöbel, A. (2002). Continuous location of dimensional structures. European Journal of Operational Research, 152, 22–44.CrossRefGoogle Scholar
  16. Drezner, Z. (1987). On the rectangular \(p\)-center problem. Naval Research Logistics, 34(2), 229–234.CrossRefGoogle Scholar
  17. Drezner, Z., & Hamacher, H. W. (2002). Facility location—Applications and theory. Berlin: Springer.CrossRefGoogle Scholar
  18. Eppstein, D. (1997). Faster construction of planar two-centers. In Proceedings of the 8th annual ACM-SIAM symposium on discrete algorithms, SODA’97, pp. 131–138, Philadelphia, PA.Google Scholar
  19. Espejo, I., & Rodríguez-Chía, A. M. (2011). Simultaneous location of a service facility and a rapid transit line. Computers & Operations Research, 38, 525–538.CrossRefGoogle Scholar
  20. Huang, P.-H., Tsai, Y. T., & Tang, C. Y. (2003). A fast algorithm for the alpha-connected two-center decision problem. Information Processing Letters, 85, 205–210.CrossRefGoogle Scholar
  21. Korman, M., & Tokuyama, T. (2008) Optimal insertion of a segment highway in a city metric. In Proceedings of the 14th international conference on computing and combinatorics (COCOON’08), LNCS, pp. 611–620.Google Scholar
  22. Körner, M.-C., & Schöbel, A. (2010). Weber problems with high-speed lines. TOP, 18(1), 223–241.CrossRefGoogle Scholar
  23. Laporte, G., Mesa, J. A., & Ortega, F. A. (2000). Optimization methods for the planning of rapid transit systems. European Journal of Operational Research, 122, 1–10.CrossRefGoogle Scholar
  24. Mitchell, J. S. B. (1992). \({L}_1\) shortest paths among polygonal obstacles in the plane. Algorithmica, 8(1), 55–88.CrossRefGoogle Scholar
  25. Plastria, F. (1995). Continuous location problems. In Z. Drezner (Ed.), Facility location: A survey of applications and methods (pp. 225–262). Berlin: Springer.CrossRefGoogle Scholar
  26. Robert, J.-M., & Toussaint, G. (1990). Computational geometry and facility location. In Proceedings of the international conference on operations research and management science, pp. 11–15.Google Scholar
  27. Toussaint, G. (1983). Solving geometric problems with the rotating calipers. In Proceedings of the IEEE MELECON’83, pp. 10–02.Google Scholar
  28. Woeginger, G. J. (1998). A comment on a minmax location problem. Operations Research Letters, 23(1–2), 41–43.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • J. M. Díaz-Báñez
    • 1
  • M. Korman
    • 2
    • 3
  • P. Pérez-Lantero
    • 4
  • I. Ventura
    • 1
  1. 1.Departamento de Matemática Aplicada IIUniversidad de SevillaSevilleSpain
  2. 2.National Institute of InformaticsTokyoJapan
  3. 3.JST, ERATO, Kawarabayashi Large Graph ProjectTokyoJapan
  4. 4.Escuela de Ingeniería Civil en InformáticaUniversidad de ValparaísoValparaisoChile

Personalised recommendations