Annals of Operations Research

, Volume 229, Issue 1, pp 541–563 | Cite as

The Top-Dog Index: a new measurement for the demand consistency of the size distribution in pre-pack orders for a fashion discounter with many small branches

  • Sascha Kurz
  • Jörg Rambau
  • Jörg Schlüchtermann
  • Rainer Wolf
Article
  • 101 Downloads

Abstract

We propose the new Top-Dog-Index, a measure for the branch-dependent historic deviation of the supply data of apparel sizes from the sales data of a fashion discounter. Our approach individually measures for each branch the scarcest and the amplest sizes, aggregated over all products. This measurement can iteratively be used to adapt the size distributions in the pre-pack orders for the future. A real-world blind study shows the potential of this distribution free heuristic optimization approach: The gross yield measured in percent of gross value was almost one percentage point higher in the test-group branches than in the control-group branches.

Keywords

Revenue management Size optimization Demand forecasting  Top-Dog-Index Field study Parallel blind testing 

Mathematics Subject Classification

Primary: 90B05 Secondary: 90B90 

References

  1. Aksoy, A., Ozturk, N., & Sucky, E. (2012). A decision support system for demand forecasting in the clothing industry. International Journal of Clothing Science and Technology, 24(4), 221–236.CrossRefGoogle Scholar
  2. Bitran, G. R., Caldentey, R., & Mondschein, S. V. (1998). Coordinating clearance markdown sales of seasonal products in retails chains. Operations Research, 46(5), 609–624.CrossRefGoogle Scholar
  3. Caro, F., & Gallien, J. (2010). Inventory management of a fast-fashion retail network. Operations Research, 58(2), 257–273.CrossRefGoogle Scholar
  4. Chan, L. M. A., Max Shen, Z. J., Simchi-Levi, D., & Swann, J. L. (2006). Coordination of pricing and inventory decisions: A survey and classification. In D. Simchi-Levi, S. D. Wu, Z. J. Max Shen (Eds.), Handbook of quantitative supply chain analysis: Modeling in the e-business era, Chap. 14 (pp. 335–392). Dordrecht: Kluwer.Google Scholar
  5. Elmaghraby, W., & Keskinocak, P. (2003). Dynamic pricing in the presence of inventory considerations: Research overview, current practices, and future directions. Management Science, 49(10), 1287–1309.CrossRefGoogle Scholar
  6. Fisher, T. (2013). On simple representations of stopping times and stopping time sigma-algebras. Statistics & Probability Letters, 83(1), 345–349.CrossRefGoogle Scholar
  7. Garro, A. (2011). A new product forecasting and distribution optimization: A case study at Zara PhD thesis, MIT, Massachusetts, USA, 194 pp.Google Scholar
  8. Kießling, M., Kurz, S., & Rambau, J. (2012). The integrated size and price optimization problem. Numerical Algebra, Control and Optimization, 2(4), 669–693.Google Scholar
  9. Kök, A. G., & Fisher, M. L. (2007). Demand estimation and assortment optimization under substitution: Methodology and application. Operations Research, 55(6), 1001–1021.CrossRefGoogle Scholar
  10. Mahajan, S., & van Ryzin, G. (2001). Stocking retail assortments under dynamic consumer substitution. Operations Research, 49(3), 334–351.CrossRefGoogle Scholar
  11. Mostard, J., Teunterb, R., & de Kostera, R. (2011). Forecasting demand for single-period products: A case study in the apparel industry. European Journal of Operational Research, 211(1), 139–147.CrossRefGoogle Scholar
  12. Ni, Y., & Fan, F. (2011). A two-stage dynamic sales forecasting model for the fashion retail. Expert Systems with Applications, 38(3), 1529–1536.CrossRefGoogle Scholar
  13. Quante, R., Meyr, H., & Fleischmann, M. (2008). Revenue management and demand fulfillment: Matching applications, models, and software. International Journal of Services Sciences, 1(2), 127–147.CrossRefGoogle Scholar
  14. van Ryzin, G., & Mahajan, S. (1999). On the relationship between inventory costs and variety benefits in retail assortments. Management Science, 45(11), 1496–1509.CrossRefGoogle Scholar
  15. Vulcano, G., van Ryzin, G., & Ratcliff, R. (2012). Estimating primary demand for substitutable products from sales transaction data. Operations Research, 38(6), 7373–7379.Google Scholar
  16. Yu, Y., Choi, T.-M., & Hui, C.-L. (2011). An intelligent fast sales forecasting model for fashion products. Expert Systems with Applications, 60(2), 313–334.Google Scholar
  17. Zhou, J., & Xu, Q. (2008). Analysis of system dynamics model in garment supply chain. Journal of Textile Research, 29(12), 122–125.Google Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Sascha Kurz
    • 1
  • Jörg Rambau
    • 1
  • Jörg Schlüchtermann
    • 2
  • Rainer Wolf
    • 3
  1. 1.Fakultät für Mathematik, Physik und InformatikUniversität BayreuthBavariaGermany
  2. 2.Fakultät für Rechts- und WirtschaftswissenschaftenUniversität BayreuthBavariaGermany
  3. 3.Handwerkskammer für MittelfrankenNürnbergGermany

Personalised recommendations