Annals of Operations Research

, Volume 246, Issue 1–2, pp 145–166 | Cite as

A short-turning policy for the management of demand disruptions in rapid transit systems

  • David Canca
  • Eva Barrena
  • Gilbert Laporte
  • Francisco A. Ortega
Article

Abstract

Rapid transit systems timetables are commonly designed to accommodate passenger demand in sections with the highest passenger load. However, disruptions frequently arise due to an increase in the demand, infrastructure incidences or as a consequence of fleet size reductions. All these circumstances give rise to unsupplied demand at certain stations, which generates passenger overloads in the available vehicles. The design of strategies that guarantee reasonable user waiting time with small increases of operation costs is now an important research topic. This paper proposes a tactical approach to determine optimal policies for dealing with such situations. Concretely, a short-turning strategy is analysed, where some vehicles perform short cycles in order to increase the frequency among certain stations of the lines and to equilibrate the train occupancy level. Turn-back points should be located and service offset should be determined with the objective of diminishing the passenger waiting time while preserving certain level of quality of service. Computational results and analysis for a real case study are provided.

Keywords

Railways Timetabling Short-turning Disruptions 

References

  1. Abril, M., Barber, F., Ingolotti, L., Lova, A., Salido, M. A., & Tormos, P. (2004). An efficient method to schedule new trains on a heavily loaded railway network. In C. Lemaîitre, C. A. Reyes, & J. A. González (Eds.), Advances in Artificial Intelligence—IBERAMIA 2004 (Vol. 3315, pp. 164–173)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Google Scholar
  2. Burdett, R. L., & Kozan, E. (2009). Techniques for inserting additional trains into existing timetables. Transportation Research Part B: Methodological, 43(8–9), 821–836.CrossRefGoogle Scholar
  3. Bussieck, M. R. (1998). Optimal lines in public rail transport. PhD thesis, Technische Universität Braunschweig, Germany.Google Scholar
  4. Bussieck, M. R., Winter, T., & Zimmermann, U. T. (1997). Discrete optimization in public rail transport. Mathematical Programming, 79(1–3), 415–444.Google Scholar
  5. Cacchiani, V., Caprara, A., & Toth, P. (2010a). Non-cyclic train timetabling and comparability graphs. Operations Research Letters, 38(3), 179–184.CrossRefGoogle Scholar
  6. Cacchiani, V., Caprara, A., & Toth, P. (2010b). Scheduling extra freight trains on railway networks. Transportation Research Part B: Methodological, 44(2), 215–231.CrossRefGoogle Scholar
  7. Cadarso, L., & Marín, A. (2012). Integration of timetable planning and rolling stock in rapid transit networks. Annals of Operations Research, 199(1), 113–135.CrossRefGoogle Scholar
  8. Canca, D. (2009). Operación mixta de una línea de ferrocarril. Análisis de capacidad y gestión de material rodante. Dirección y Organización, 39, 45–53.Google Scholar
  9. Canca, D., Barrena, E., Algaba, E., & Zarzo, A. (2014). Design and analysis of demand-adapted railway timetables. Journal of Advanced Transportation, 48(2), 119–137.CrossRefGoogle Scholar
  10. Canca, D., Barrena, E., Zarzo, A., Ortega, F. A., & Algaba, E. (2012). Optimal train reallocation strategies under service disruptions. Procedia Social and Behavioral Sciences, 54, 402–413.CrossRefGoogle Scholar
  11. Ceder, A. (1989). Optimal design of transit short-turn trips. Transportation Research Record, 1221, 8–22.Google Scholar
  12. Ceder, A., & Wilson, N. H. M. (1986). Bus network design. Transportation Research Part B: Methodological, 20(4), 331–334.CrossRefGoogle Scholar
  13. Chen, M., Liu, X., & Xia, J. (2005). Dynamic prediction method with schedule recovery impact for bus arrival time. Transportation Research Record, 1923, 208–217.CrossRefGoogle Scholar
  14. Chen, M., Niu, H. (2009). Modeling transit scheduling problem with short-turn strategy for a congested public bus line. In R. Liu, J. Zhang, and C. Guan, editors, Logistics: The Emerging Frontiers of Transportation and Development in China. Eighth International Conference of Chinese Logistics and Transportation Professionals (ICCLTP), pp. 4320–4326. American Society of Civil Engineers.Google Scholar
  15. Chierici, A., Cordone, R., & Maja, R. (2004). The demand-dependent optimization of regular train timetables. Electronic Notes in Discrete Mathematics, 17, 99–104.CrossRefGoogle Scholar
  16. Coor, G. T. (1997). Analysis of the Short-Turning Strategy on High-Frequency Transit Lines. PhD thesis, Masschusetts Institute of Technology.Google Scholar
  17. Corman, F., D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2012). Bi-objective conflict detection and resolution in railway traffic management. Transportation Research Part C: Emerging Technologies, 20, 79–94.CrossRefGoogle Scholar
  18. Cortés, C. E., Jara-Díaz, S., & Tirachini, A. (2011). Integrating short turning and deadheading in the optimization of transit services. Transportation Research Part A: Policy and Practice, 45(5), 419–434.Google Scholar
  19. D’Ariano, A., Pacciarelli, D., & Pranzo, M. (2007). A branch and bound algorithm for scheduling trains in a railway network. European Journal of Operational Research, 183(2), 643–657.CrossRefGoogle Scholar
  20. Delle Site, P. D., & Filippi, F. (1998). Service optimization for bus corridors with short-turn strategies and variable vehicle size. Transportation Research Part A: Policy and Practice, 32(1), 19–28.Google Scholar
  21. Desaulniers, G., Hickman, M. (2007). Public transit. In C. Barnhart and G. Laporte, editors, Transportation, volume 14 of Handbooks in Operations Research and Management Science, chapter 2, pp. 69–127. Amsterdam: Elsevier.Google Scholar
  22. Eberlein, X. J., Wilson, N. H. M., & Bernstein, D. (1999). Modeling real-time control strategies in public transport operations. In N. H. M. Wilson (Ed.), Computer-aided Transit Scheduling (Vol. 471, pp. 352–346), Lecture Notes in Economics and Mathematical Systems Springer: Berlin Heidelberg.Google Scholar
  23. Eberlein, X. J., Wilson, N. H. M., Barnhart, C., & Bernstein, D. (1998). The real-time deadheading problem in transit operations control. Transportation Research Part B: Methodological, 32(2), 77–100.CrossRefGoogle Scholar
  24. Fischetti, M., Salvagnin, D., & Zanette, A. (2009). Fast approaches to improve the robustness of a railway timetable. Transportation Science, 43(3), 321–335.CrossRefGoogle Scholar
  25. Flier, H., Graffagnino, T., & Nunkesser, M. (2009). Scheduling additional trains on dense corridors. In J. Vahrenhold (Ed.), Experimental Algorithms (Vol. 5526, pp. 149–160)., Lecture Notes in Computer Science Springer: Berlin Heidelberg.Google Scholar
  26. Fu, L., Liu, Q., & Calamai, P. (2003). Real-time optimization model for dynamic scheduling of transit operations. Transportation Research Record, 1857, 48–55.CrossRefGoogle Scholar
  27. Furth, P. G. (1987). Short turning on transit routes. Transportation Research Record, 1108, 42–52.Google Scholar
  28. Grosfeld-Nir, A., & Bookbinder, J. H. (1995). The planning of headways in urban public transit. Annals of Operations Research, 60, 145–160.CrossRefGoogle Scholar
  29. Guihaire, V., & Hao, J. K. (2008). Transit network design and scheduling: A global review. Transportation Research Part A: Policy and Practice, 42(10), 1251–1273.Google Scholar
  30. Hadas, Y., & Ceder, A. (2010). Optimal coordination of public-transit vehicles using operational tactics examined by simulation. Transportation Research Part C: Emerging Technologies, 18(6), 879–895.CrossRefGoogle Scholar
  31. Kroon, L. G., Dekker, R., & Vromans, M. (2007). Cyclic railway timetabling: a stochastic optimization approach. In F. Geraets, L. Kroon, A. Schöbel, D. Wagner, & C. D. Zaroliagis (Eds.), Algorithmic Methods for Railway Optimization (Vol. 4359, pp. 41–66)., Lecture Notes in Computer Science Berlin Heidelberg: Springer.Google Scholar
  32. Liebchen, C. (2004). Symmetry for periodic railway timetables. Electronic Notes in Theoretical Computer Science, 92, 34–51.CrossRefGoogle Scholar
  33. Liebchen, C., & Möhring, R. (2002). A case study in periodic timetabling. Electronic Notes in Theoretical Computer Science, 66(6), 1–14.CrossRefGoogle Scholar
  34. Liebchen, C., & Möhring, R. (2007). The modeling power of the periodic event scheduling problem: railway timetables and beyond. In F. Geraets, L. G. Kroon, A. Schöbel, D. Wagner, & C. D. Zaroliagis (Eds.), Algorithmic Methods for Railway Optimization (Vol. 4359, pp. 3–40)., Lecture Notes in Computer Science Springer: Berlin Heidelberg.Google Scholar
  35. Liebchen, C., & Peeters, L. (2009). Integral cycle bases for cyclic timetabling. Discrete Optimization, 6(1), 89–109.CrossRefGoogle Scholar
  36. Liebchen, C., & Stiller, S. (2009). Delay resistant timetabling. Public. Transport, 1(1), 55–72.Google Scholar
  37. Louwerse, I., & Huisman, D. (2014). Adjusting a railway timetable in case of partial or complete blockades. European Journal of Operational Research, 235(3), 583–593.CrossRefGoogle Scholar
  38. Magnanti, T. L., & Wong, R. T. (1984). Network design and transportation planning: Models and algorithms. Transportation Science, 18(1), 1–55.CrossRefGoogle Scholar
  39. Mannino, C., & Mascis, A. (2009). Optimal real-time traffic control in metro stations. Operations Research, 57(4), 1026–1039.CrossRefGoogle Scholar
  40. Mesa, J. A., Ortega, F. A., & Pozo, M. A. (2009). Effective allocation of fleet frequencies by reducing intermediate stops and short turning in transit systems. In R. K. Ravindra K. Ahuja, R. H. Möhring, and C. D. Zaroliagis, (Ed.), Robust and Online Large-Scale Optimization (Vol. 5868, pp. 293–309)., Lecture Notes in Computer Science Springer: Berlin Heidelberg.Google Scholar
  41. Mesa, J. A., Ortega, F. A., & Pozo, M. A. (2013). Locating optimal timetables and vehicle schedules in a transit line. Annals of Operations Research, 144(1), 263–285. doi:10.1007/s10479-013-1393-5 (published on line 25.
  42. Michaelis, M., & Schöbel, A. (2009). Integrating line planning, timetabling, and vehicle scheduling: A customer-oriented heuristic. Public Transport, 1(3), 211–232.CrossRefGoogle Scholar
  43. Quak, C. B. (2003). Bus line planning. Master’s thesis, Delft University of technology, The Netherlands.Google Scholar
  44. Serafini, P., & Ukovich, W. (1989). A mathematical model for periodic scheduling problems. SIAM Journal on Discrete Mathematics, 2(4), 550–581.CrossRefGoogle Scholar
  45. Soeldner, D.W. (1993). A Comparison of Control Options on the MBTA Green Line. PhD thesis, Massachusetts Institute of Technology.Google Scholar
  46. Tirachini, A., Cortés, C.E. (2007). Disaggregated modeling of pre-planned short-turning strategies in transit corridors. In Transportation Research Board (TRB) 86th Annual Meeting, Washington DC., 21–25 Jan 2007.Google Scholar
  47. Tirachini, A., Cortés, C. E., & Jara-Díaz, S. R. (2011). Optimal design and benefits of a short turning strategy for a bus corridor. Transportation, 38(1), 169–189.CrossRefGoogle Scholar
  48. Vera, V.A. (2010). Integrating Crew Scheduling and Rostering Problems. PhD thesis, Alma Mater Studiorum Università di Bologna, Italy.Google Scholar
  49. Vijayaraghavan, T. A. S., & Anantharamaiah, K. (1995). Fleet assignment strategies in urban transportation using express and partial services. Transportation Research Part A: Policy and Practice, 29(2), 157–171.Google Scholar
  50. Walker, C. G., Snowdonb, J. N., & Ryana, D. M. (2005). Simultaneous disruption recovery of a train timetable and crew roster in real time. Computers & Operations Research, 32(8), 2077–2094.CrossRefGoogle Scholar
  51. Wardman, M., Shires, J., Lythgoe, W., & Tyler, J. (2004). Consumer benefits and demand impacts of regular train timetables. International Journal of Transport Management, 2(1), 39–49.CrossRefGoogle Scholar
  52. Westerlund, T., & Pörn, R. (2002). Solving pseudo-convex mixed integer optimization problems by cutting plane techniques. Optimization and Engineering, 3(3), 253–280.CrossRefGoogle Scholar
  53. Wilson, N. H. M., Macchi, R. A., Fellows, R. E., & Deckoff, A. A. (1992). Improving service on the MBTA Green Line through better operations control. Transportation Research Record, 1361, 296–304.Google Scholar
  54. Zhou, X., & Zhong, M. (2005). Bicriteria train scheduling for high-speed passenger railroad planning applications. European Journal of Operational Research, 167(3), 752–771.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • David Canca
    • 1
  • Eva Barrena
    • 2
  • Gilbert Laporte
    • 2
  • Francisco A. Ortega
    • 3
  1. 1.Industrial Engineering and Management Science I, School of EngineeringUniversity of SevilleSevilleSpain
  2. 2.Interuniversity Research Center on Network Enterprise, Logistics and Transportation (CIRRELT) and HEC MontréalMontréalCanada
  3. 3.Department of Applied Mathematics I, School of ArchitectureUniversity of SevilleSevilleSpain

Personalised recommendations