Annals of Operations Research

, Volume 217, Issue 1, pp 77–94 | Cite as

A data model for algorithmic multiple criteria decision analysis

  • Olivier CaillouxEmail author
  • Tommi Tervonen
  • Boris Verhaegen
  • François Picalausa


Various software tools implementing multiple criteria decision analysis (MCDA) methods have appeared over the last decades. Although MCDA methods share common features, most of the implementing software have been developed independently from scratch. Majority of the tools have a proprietary storage format and exchanging data among software is cumbersome. Common data exchange standard would be useful for an analyst wanting to apply different methods on the same problem. The Decision Deck project has proposed to build components implementing MCDA methods in a reusable and interchangeable manner. A key element in this scheme is the XMCDA standard, a proposal that aims to standardize an XML encoding of common structures appearing in MCDA models, such as criteria and performance evaluations. Although XMCDA allows to present most data structures for MCDA models, it almost completely lacks data integrity checks. In this paper we present a new comprehensive data model for MCDA problems, implemented as an XML schema. The data model includes types that are sufficient to represent multi-attribute value/utility models, ELECTRE III/TRI models, and their stochastic extensions, and AHP. We also discuss use of the data model in algorithmic MCDA.


Multiple criteria decision analysis (MCDA) Data model Multi-attribute value theory Utility theory ELECTRE methods Stochastic multicriteria acceptability analysis (SMAA) XML 

Supplementary material

10479_2014_1562_MOESM1_ESM.xsd (17 kb)
Supplementary material 1 (XSD 17 kb)
10479_2014_1562_MOESM2_ESM.pdf (13 kb)
Supplementary material 2 (PDF 14 kb)


  1. Bigaret, S., & Meyer, P. (2012). Diviz: An MCDA workflow design, execution and sharing tool. Intelligent Decision Technologies Journal, 6(4), 283–296.Google Scholar
  2. Brans, J., Mareschal, B., & Vincke, P. (1984). PROMETHEE: a new family of outranking methods in multicriteria analysis. In J. Brans (Ed.), Operational research (pp. 477–490). Amsterdam: IFORS 84.Google Scholar
  3. Cailloux, O. (2010). ELECTRE and PROMETHEE MCDA methods as reusable software components. In C. H. Antunes, D. R. Insua, & L. Dias (Eds.), Proceedings of the 25th Mini-EURO Conference on Uncertainty and Robustness in Planning and Decision Making (URPDM 2010), Coimbra.Google Scholar
  4. Fedorowicz, J., & Williams, G. B. (1986). Representing modeling knowledge in an intelligent decision support system. Decision Support Systems, 2(1), 3–14. doi: 10.1016/0167-9236(86)90116-8.CrossRefGoogle Scholar
  5. Figueira, J., Greco, S., & Ehrgott, M. (Eds.) (2005). Multiple criteria decision analysis: State of the art surveys. New York: Springer.Google Scholar
  6. Fourer, R., Gassmann, H. I., Ma, J., & Martin, R. K. (2009). An XML-based schema for stochastic programs. Annals of Operations Research, 166(1), 313–337. doi:  10.1007/s10479-008-0419-x.CrossRefGoogle Scholar
  7. Fourer, R., Ma, J., & Martin, K. (2010a). Optimization services: A framework for distributed optimization. Operations Research, 58(6), 1624–1636. doi:  10.1287/opre.1100.0880.CrossRefGoogle Scholar
  8. Fourer, R., Ma, J., & Martin, K. (2010b). OSiL: An instance language for optimization. Computational Optimization and Applications, 45(1), 181–203. doi:  10.1007/s10589-008-9169-6.CrossRefGoogle Scholar
  9. Gauthier, L., & Néel, T. (1996). SAGE: An object-oriented framework for the construction of farm decision support systems. Computers and Electronics in Agriculture, 16(1), 1–20. doi:  10.1016/S0168-1699(96)00018-X.CrossRefGoogle Scholar
  10. Georgopoulou, E., Sarafidis, Y., & Diakoulaki, D. (1998). Design and implementation of a group DSS for sustaining renewable energies exploitation. European Journal of Operational Research, 109(2), 483–500. doi:  10.1016/S0377-2217(98)00072-1.CrossRefGoogle Scholar
  11. Greco, S., Mousseau, V., & Słowiński, R. (2008). Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions. European Journal of Operational Research, 191(2), 415–435, doi:  10.1016/j.ejor.2007.08.013.CrossRefGoogle Scholar
  12. Guazzelli, A., Zeller, M., Chen, W., & Williams, G. (2009). PMML: An open standard for sharing models. The R Journal, 1(1):60–65.Google Scholar
  13. Hong, I. B., & Vogel, D. R. (1991). Data and model management in a generalized MCDM-DSS. Decision Sciences, 22(1), 1–25. doi:  10.1111/j.1540-5915.1991.tb01258.x.Google Scholar
  14. Hwang, C., & Yoon, K. (1981). Multiple attribute decision making: Methods and applications; A state-of-the-art survey. Newyork: Springer.Google Scholar
  15. Jiménez, A., Ríos-Insua, S., & Mateos, A. (2006). A generic multi-attribute analysis system. Computers & Operations Research, 33(4), 1081–1101. doi:  10.1016/j.cor.2004.09.003.CrossRefGoogle Scholar
  16. Jármai, K. (1989). Single- and multicriteria optimization as a tool of decision support system. Computers in Industry, 11(3), 249–266, doi:  10.1016/0166-3615(89)90006-7.CrossRefGoogle Scholar
  17. Keeney, R., & Raiffa, H. (1976). Decisions with multiple objectives: Preferences and value tradeoffs. New York: J. Wiley.Google Scholar
  18. Lahdelma, R., & Salminen, P. (2001). SMAA-2: Stochastic multicriteria acceptability analysis for group decision making. Operations Research, 49(3), 444–454. doi:  10.1287/opre.49.3.444.11220.CrossRefGoogle Scholar
  19. Lahdelma, R., Hokkanen, J., & Salminen, P. (1998). SMAA—Stochastic multiobjective acceptability analysis. European Journal of Operational Research, 106(1), 137–143. doi:  10.1016/S0377-2217(97)00163-X.CrossRefGoogle Scholar
  20. Martin, M., Fuerst, W. (1984). Effective design and use of computer decision models. Management Information Systems Quarterly, 8(1), 17–26.Google Scholar
  21. Minch, R.P., & Sanders, G.L. (1986). Computerized information systems supporting multicriteria decision making. Decision Sciences, 17(3), 395–413. doi:  10.1111/j.1540-5915.1986.tb00233.x.CrossRefGoogle Scholar
  22. Natividade-Jesus, E., Coutinho-Rodrigues, J., & Antunes, C. H. (2007). A multicriteria decision support system for housing evaluation. Decision Support Systems, 43(3), 779–790, doi: 10.1016/j.dss.2006.03.014.CrossRefGoogle Scholar
  23. Roy, B. (1991). The outranking approach and the foundations of ELECTRE methods. Theory and Decision, 31, (1):49–73.CrossRefGoogle Scholar
  24. Roy, B. (1996). Multicriteria methodology for decision analysis. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  25. Spengler, T., Geldermann, J., Hähre, S., Sieverdingbeck, A., & Rentz, O. (1998). Development of a multiple criteria based decision support system for environmental assessment of recycling measures in the iron and steel making industry. Journal of Cleaner Production, 6(1), 37–52. doi:  10.1016/S0959-6526(97)00048-6.CrossRefGoogle Scholar
  26. Teghem, J., Delhaye, C., & Kunsch, P.L. (1989). An interactive decision support system (IDSS) for multicriteria decision aid. Mathematical and Computer Modelling, 12(10–11), 1311–1320. doi:  10.1016/0895-7177(89)90370-1.CrossRefGoogle Scholar
  27. Tervonen, T. (2014). JSMAA: Open source software for SMAA computations. International Journal of Systems Science, 45(1), 69–81. doi:  10.1080/00207721.2012.659706.CrossRefGoogle Scholar
  28. Tervonen, T., & Figueira, J.R. (2008). A survey on stochastic multicriteria acceptability analysis methods. Journal of Multi-Criteria Decision Analysis, 15(1–2), 1–14. doi:  10.1002/mcda.407.CrossRefGoogle Scholar
  29. Tervonen, T., Figueira, J.R., Lahdelma, R., Almeida Dias, J., & Salminen, P. (2009). A stochastic method for robustness analysis in sorting problems. European Journal of Operational Research, 192(1), 236–242. doi:  10.1016/j.ejor.2007.09.008.CrossRefGoogle Scholar
  30. van Valkenhoef, G., Tervonen, T., Zwinkels, T., de Brock, B., & Hillege, H. (2013). ADDIS: A decision support system for evidence-based medicine. Decision Support Systems, 55(2), 459–475. doi:  10.1016/j.dss.2012.10.005.CrossRefGoogle Scholar
  31. Wallenius, J., Dyer, J. S., Fishburn, P. C., Steuer, R. E., Zionts, S., & Deb, K. (2008). Multiple criteria decision making, multiattribute utility theory: recent accomplishments and what lies ahead. Management Science, 54(7), 1336–1349.CrossRefGoogle Scholar
  32. Zopounidis, C., & Doumpos, M. (2000). PREFDIS: A multicriteria decision support system for sorting decision problems. Computers & Operations Research, 27(7–8), 779–797, doi: 10.1016/S0305-0548(99)00118-5.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Olivier Cailloux
    • 1
    • 4
    Email author
  • Tommi Tervonen
    • 2
  • Boris Verhaegen
    • 3
  • François Picalausa
    • 3
  1. 1.Institute for Logic, Language and ComputationUniversity of AmsterdamAmsterdamThe Netherlands
  2. 2.Econometric Institute, Erasmus School of EconomicsErasmus University RotterdamRotterdamThe Netherlands
  3. 3.Department of Computer and Decision EngineeringUniversité Libre de BruxellesBrusselsBelgium
  4. 4.Industrial Engineering LaboratoryÉcole Centrale ParisChâtenay-Malabry CedexFrance

Personalised recommendations