Annals of Operations Research

, Volume 239, Issue 1, pp 171–188

Fairness in academic course timetabling

Article

Abstract

We consider the problem of creating fair course timetables in the setting of a university. The central idea is that undesirable arrangements in the course timetable, i.e., violations of soft constraints, should be distributed in a fair way among the stakeholders. We propose and discuss in detail two fair versions of the popular curriculum-based course timetabling (CB-CTT) problem, the MMF-CB-CTT problem and the JFI-CB-CTT problem, which are based on max–min fairness (MMF) and Jain’s fairness index (JFI), respectively. For solving the MMF-CB-CTT problem, we present and experimentally evaluate an optimization algorithm based on simulated annealing. We introduce three different energy difference measures and evaluate their impact on the overall algorithm performance. The proposed algorithm improves the fairness on 20 out of 32 standard instances compared to the known best timetables. The JFI-CB-CTT problem formulation focuses on the trade-off between fairness and the aggregated soft constraint violations. Here, our experimental evaluation shows that the known best solutions to 32 CB-CTT standard instances are quite fair with respect to JFI. Our experiments show that the fairness can often be improved at the cost of only a small increase in the overall amount of penalty.

Keywords

Curriculum-based course timetabling Max–min fairness Fairness index 

References

  1. Abdullah, S., Burke, E. K., & McCollum, B. (2007). A hybrid evolutionary approach to the university course timetabling problem. In IEEE congress on evolutionary computation (CEC) (pp. 1764–1768). doi:10.1109/CEC.2007.4424686.
  2. Asín Acha, R., & Nieuwenhuis, R. (2010). Curriculum-based course timetabling with SAT and MaxSAT. In Proceedings of the 8th international conference on the practice and theory of automated timetabling (PATAT) (pp. 42–56).Google Scholar
  3. Bandyopadhyay, S., Saha, S., Maulik, U., & Deb, K. (2008). A simulated annealing-based multiobjective optimization algorithm: AMOSA. IEEE Transactions on Evolutionary Computation, 12, 269–283. doi:10.1109/TEVC.2007.900837.CrossRefGoogle Scholar
  4. Bartal, Y., Farach-Colton, M., Yooseph, S., & Zhang, L. (2002). Fast, fair and frugal bandwidth allocation in ATM networks. Algorithmica, 33(3), 272–286. doi:10.1007/s00453-001-0119-2.CrossRefGoogle Scholar
  5. Bellio, R., DiGaspero, L., & Schaerf, A. (2012). Design and statistical analysis of a hybrid local search algorithm for course timetabling. Journal of Scheduling, 15, 49–61. doi:10.1007/s10951-011-0224-2.CrossRefGoogle Scholar
  6. Bertsekas, D. P., & Gallager, R. (1992). Data networks (2nd ed.). Upper Saddle River: Prentice Hall.Google Scholar
  7. Bertsimas, D., Farias, V. F., & Trichakis, N. (2011). The price of fairness. Operations Research, 59(1), 17–31. doi:10.1287/opre.1100.0865.CrossRefGoogle Scholar
  8. Bullnheimer, B. (1998). An examination scheduling model to maximize students study time. In Proceedings of the 2nd international conference on the practice and theory of automated timetabling (PATAT) (pp. 78–91). doi:10.1007/BFb0055882.
  9. Burke, E. K., Eckersley, A. J., McCollum, B., Petrovic, S., & Qu, R. (2010). Hybrid variable neighbourhood approaches to university exam timetabling. European Journal of Operational Research, 206(1), 46–53. doi:10.1016/j.ejor.2010.01.044.CrossRefGoogle Scholar
  10. Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2011). A branch-and-cut procedure for the Udine Course Timetabling problem. Annals of Operations Research, 194(1), 71–87. doi:10.1007/s10479-010-0828-5.CrossRefGoogle Scholar
  11. Burke, E. K., McCollum, B., Meisels, A., Petrovic, S., & Qu, R. (2007). A graph-based hyper-heuristic for educational timetabling problems. European Journal of Operational Research, 176(1), 177–192. doi:10.1016/j.ejor.2005.08.012.CrossRefGoogle Scholar
  12. Chiu, D. M., & Jain, R. (1989). Analysis of the increase and decrease algorithms for congestion avoidance in computer networks. Computer Networks and ISDN Systems, 17, 1–14. doi:10.1016/0169-7552(89)90019-6.CrossRefGoogle Scholar
  13. Constantino, A. A., de Melo, E. L., Romao, W., & Landa-Silva, D. (2011). A heuristic algorithm for nurse scheduling with balanced preference satisfaction. In Proceedings of the IEEE symposium on computational intelligence in scheduling (CISched) (pp. 39–45). doi:10.1109/SCIS.2011.5976549.
  14. Di Gaspero, L., McCollum, B., Schaerf, A. (2007). The second international timetabling competition (ITC-2007): Curriculum-based course timetabling (Track 3). Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1, School of Electronics, Electrical Engineering and Computer Science, Queens University, Belfast (UK).Google Scholar
  15. Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5, 65–89. doi:10.1007/s10852-005-9032-z.CrossRefGoogle Scholar
  16. Di Gaspero, L., & Schaerf, A. (2008). Hybrid local search techniques for the generalized balanced academic curriculum problem. In Proceedings of the 5th international workshop on hybrid metaheuristics (HM) (pp. 146–157). doi:10.1007/978-3-540-88439-2_11.
  17. Di Gaspero, L., & Schaerf, A. (2012). Curriculum-based course timetabling site. http://satt.diegm.uniud.it/ctt/.
  18. Edmonds, J., & Fulkerson, D. (1970). Bottleneck extrema. Journal of Combinatorial Theory, 8(3), 299–306. doi:10.1016/S0021-9800(70)80083-7.CrossRefGoogle Scholar
  19. Feldman, A., & Serrano, R. (2006). Welfare economics and social choice theory (2nd ed.). New York, NY: Springer. doi:10.1007/0-387-29368-X.
  20. Gini, C. (1921). Measurement of inequality of incomes. The Economic Journal, 31(121), 124–126. doi:10.2307/2223319.CrossRefGoogle Scholar
  21. Jain, R. K., Chiu, D. M. W., & Hawe, W. R. (1984). A quantitative measure of fairness and discrimination for resource allocation in shared computer systems. Tech. Rep. DEC-TR-301, Digital Equipment Corporation.Google Scholar
  22. Kelly, F., Maulloo, A., & Tan, D. (1998). Rate control in communication networks: shadow prices, proportional fairness and stability. Journal of the Operational Research Society, 49, 237–252. doi:10.1057/palgrave.jors.2600523.CrossRefGoogle Scholar
  23. Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated annealing. Science, 220(4598), 671–680. doi:10.1126/science.220.4598.671.CrossRefGoogle Scholar
  24. Kleinberg, J., Rabani, Y., & Tardos, É. (2001). Fairness in routing and load balancing. Journal of Computer and System Sciences, 63(1), 2–20. doi:10.1006/jcss.2001.1752.CrossRefGoogle Scholar
  25. Kostuch, P. (2004). The university course timetabling problem with a three-phase approach. In Proceedings of the 5th international conference on the practice and theory of automated timetabling (PATAT) (pp. 109–125). doi:10.1007/11593577_7.
  26. Koulamas, C., Antony, S., & Jaen, R. (1994). A survey of simulated annealing applications to operations research problems. Omega, 22(1), 41–56. doi:10.1016/0305-0483(94)90006-X.CrossRefGoogle Scholar
  27. Laarhoven, P. J. M. V., & Aarts, E. H. L. (1987). Simulated annealing: Theory and applications. Dordrecht: Kluwer Academic Publishers.CrossRefGoogle Scholar
  28. Lach, G., & Lübbecke, M. E. (2010). Curriculum based course timetabling: New solutions to Udine benchmark instances. Annals of Operations Research, 194, 1–18. doi:10.1007/s10479-010-0700-7.Google Scholar
  29. Lapin, L. (1990). Probability and statistics for modern engineering. Long Grove: Waveland Press.Google Scholar
  30. Lü, Z., & Hao, J. K. (2010). Adaptive tabu search for course timetabling. European Journal of Operational Research, 200(1), 235–244. doi:10.1016/j.ejor.2008.12.007.CrossRefGoogle Scholar
  31. Martin, S., Ouelhadj, D., Smet, P., & Vanden Berghe, G., & Özcan, E. (2013). Cooperative search for fair nurse rosters. Expert Systems with Applications, 40(16), 6674–6683, doi:10.1016/j.eswa.2013.06.019.CrossRefGoogle Scholar
  32. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A. J., Di Gaspero, L., Qu, R., & Burke, E. K. (2010). Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing, 22, 120–130. doi:10.1287/ijoc.1090.0320.CrossRefGoogle Scholar
  33. Merlot, L. T. G., Boland, N., Hughes, B. D., & Stuckey, P. J. (2002). A hybrid algorithm for the examination timetabling problem. In Proceedings of the 4th international conference on the practice and theory of automated timetabling (PATAT) (pp. 207–231). doi:10.1007/978-3-540-45157-0_14.
  34. Mühlenthaler, M., & Wanka, R. (2012). Fairness in academic timetabling. In Proceedings of the 9th international conference on the practice and theory of automated timetabling (PATAT) (pp. 114–130).Google Scholar
  35. Muklason, A., Parkes, A. J., McCollum, B., & Özcan, E. (2013). Initial results on fairness in examination timetabling. In Proceedings of the 6th multidisciplinary international conference on scheduling: Theory and applications (MISTA) (pp. 777–780).Google Scholar
  36. Müller, T. (2009). ITC2007 solver description: A hybrid approach. Annals of Operations Research, 172(1), 429–446. doi:10.1007/s10479-009-0644-y.CrossRefGoogle Scholar
  37. Ogryczak, W. (2010). Bicriteria models for fair and efficient resource allocation. In Proceedings of the 2nd international conference on social informatics (SocInfo) (pp. 140–159). doi:10.1007/978-3-642-16567-2_11.
  38. Ogryczak, W., & Wierzbicki, A. (2004). On multi-criteria approaches to bandwidth allocation. Control and Cybernetics, 33, 427–448.Google Scholar
  39. Punnen, A. P., & Zhang, R. (2011). Quadratic bottleneck problems. Naval Research Logistics (NRL), 58(2), 153–164. doi:10.1002/nav.20446.CrossRefGoogle Scholar
  40. Rawls, J. (1999). A theory of justice, revised edn. Cambridge: Belknap Press of Harvard University Press.Google Scholar
  41. Salles, R. M., & Barria, J. A. (2008). Lexicographic maximin optimisation for fair bandwidth allocation in computer networks. European Journal of Operational Research, 185(2), 778–794. doi:10.1016/j.ejor.2006.12.047.CrossRefGoogle Scholar
  42. Smet, P., Martin, S., & Ouelhadj, D., Özcan, E., & Vanden Berghe, G. (2012). Investigation of fairness measures for nurse rostering. In Proceedings of the 9th international conference on the practice and theory of automated timetabling (PATAT) (pp. 369–372).Google Scholar
  43. Soomer, M. J., & Koole, G. M. (2008). Fairness in the aircraft landing problem. In Proceedings of the Anna Valicek competition 2008.Google Scholar
  44. Thompson, J., & Dowsland, K. A. (1996). General cooling schedules for a simulated annealing based timetabling system. In Proceedings of the 1st international confernce on the practice and theory of automated timetabling (PATAT) (pp. 345–363). doi:10.1007/3-540-61794-9_70.
  45. Thompson, J. M., & Dowsland, K. A. (1998). A robust simulated annealing based examination timetabling system. Computers & Operations Research, 25(7–8), 637–648. doi:10.1016/S0305-0548(97)00101-9.CrossRefGoogle Scholar
  46. Tuga, M., Berretta, R., & Mendes, A. (2007). A hybrid simulated annealing with Kempe chain neighborhood for the university timetabling problem. In Proceedings of the 6th ACIS international conference on computer and information science (ACIS-ICIS) (pp. 400–405). doi:10.1109/ICIS.2007.25.
  47. Wilcoxon, F. (1945). Individual comparisons by ranking methods. Biometrics Bulletin, 1(6), 80–83.CrossRefGoogle Scholar
  48. Yager, R. R. (1988). On ordered weighted averaging aggregation operators in multicriteria decisionmaking. IEEE Transactions on Systems, Man and Cybernetics, 18(1), 183–190, doi:10.1109/21.87068.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.Department of Computer ScienceUniversity of Erlangen-NurembergErlangenGermany

Personalised recommendations