Annals of Operations Research

, Volume 239, Issue 2, pp 613–624 | Cite as

Application of stochastic programming to reduce uncertainty in quality-based supply planning of slaughterhouses

  • W. A. Rijpkema
  • E. M. T. Hendrix
  • R. Rossi
  • J. G. A. J. van der Vorst
Article

Abstract

To match products of different quality with end market preferences under supply uncertainty, it is crucial to integrate product quality information in logistics decision making. We present a case of this integration in a meat processing company that faces uncertainty in delivered livestock quality. We develop a stochastic programming model that exploits historical product quality delivery data to produce slaughterhouse allocation plans with reduced levels of uncertainty in received livestock quality. The allocation plans generated by this model fulfil demand for multiple quality features at separate slaughterhouses under prescribed service levels while minimizing transportation costs. We test the model on real world problem instances generated from a data set provided by an industrial partner. Results show that historical farmer delivery data can be used to reduce uncertainty in quality of animals to be delivered to slaughterhouses.

Keywords

Supply chain Uncertainty Food supply chain networks Stochastic programming Allocation planning Quality controlled logistics 

References

  1. Akkerman, R., Farahani, P., & Grunow, M. (2010). Quality, safety and sustainability in food distribution: a review of quantitative operations management approaches and challenges. OR Spektrum, 32(4), 863–904. CrossRefGoogle Scholar
  2. Ben-Tal, A., El Ghaoui, L., & Nemirovski, A. (2009). Robust optimization. Princeton series in applied mathematics. Princeton: Princeton University Press. CrossRefGoogle Scholar
  3. Birge, J. R., & Louveaux, F. (1997). Introduction to stochastic programming. Springer series in operations research. New York: Springer. Google Scholar
  4. Brunsø, K., Fjord, T. A., & Grunert, K. G. (2002). Consumers’ food choice and quality perception. Working paper 77, ISSN 0907 2101. Google Scholar
  5. Chai, J., Liu, J. N. K., & Ngai, E. W. T. (2013). Application of decision-making techniques in supplier selection: a systematic review of literature. Expert Systems with Applications, 40(10), 3872–3885. CrossRefGoogle Scholar
  6. Dabbene, F., Gay, P., & Sacco, N. (2008a). Optimisation of fresh-food supply chains in uncertain environments, part I: Background and methodology. Biosystems Engineering, 99(3), 348–359. CrossRefGoogle Scholar
  7. Dabbene, F., Gay, P., & Sacco, N. (2008b). Optimisation of fresh-food supply chains in uncertain environments, part II: A case study. Biosystems Engineering, 99(3), 360–371. CrossRefGoogle Scholar
  8. Grunert, K. G. (2006). How changes in consumer behaviour and retailing affect competence requirements for food producers and processors. Economia Agraria y Recursos Naturales, 6(11), 3–22. Google Scholar
  9. Grunert, K. G., Bredahl, L., & Brunsø, K. (2004). Consumer perception of meat quality and implications for product development in the meat sector—a review. Meat Science, 66(2), 259–272. CrossRefGoogle Scholar
  10. Grunow, M., & van der Vorst, J. G. A. J. (2010). Food production and supply chain management. OR Spektrum, 32(4), 861–862. CrossRefGoogle Scholar
  11. Klein Haneveld, W., & van der Vlerk, M. H. (1999). Stochastic integer programming: general models and algorithms. Annals of Operations Research, 85(0), 39–57. CrossRefGoogle Scholar
  12. Kumar, P., Reinitz, H. W., Simunovic, J., Sandeep, K. P., & Franzon, P. D. (2009). Overview of RFID technology and its applications in the food industry. Journal of Food Science, 74(8), 101–106. CrossRefGoogle Scholar
  13. Peidro, D., Mula, J., Poler, R., & Lario, F. (2009). Quantitative models for supply chain planning under uncertainty: a review. The International Journal of Advanced Manufacturing Technology, 43(3), 400–420. CrossRefGoogle Scholar
  14. Perez, C., de Castro, R., & Font i Furnols, M. (2009). The pork industry: a supply chain perspective. British Food Journal, 111(3), 257–274. CrossRefGoogle Scholar
  15. Rong, A., Akkerman, R., & Grunow, M. (2011). An optimization approach for managing fresh food quality throughout the supply chain. International Journal of Production Economics, 131(1), 421–429. CrossRefGoogle Scholar
  16. Rossi, R., Tarim, S. A., Hnich, B., & Prestwich, S. (2012). Constraint programming for stochastic inventory systems under shortage cost. Annals of Operations Research, 195(1), 49–71. CrossRefGoogle Scholar
  17. Sahinidis, N. V. (2004). Optimization under uncertainty: state-of-the-art and opportunities. Computers & Chemical Engineering, 28(6–7), 971–983. CrossRefGoogle Scholar
  18. Tarim, S. A., Hnich, B., Prestwich, S., & Rossi, R. (2009). Finding reliable solutions: event-driven probabilistic constraint programming. Annals of Operations Research, 171(1), 77–99. CrossRefGoogle Scholar
  19. van der Vorst, J. G. A. J., van Kooten, O., & Luning, P. A. (2011). Towards a diagnostic instrument to identify improvement opportunities for quality controlled logistics in agrifood supply chain networks. International Journal on Food System Dynamics, 2(1), 94–105. Google Scholar
  20. van der Vorst, J. G. A. J., Tromp, S. O., & van der Zee, D. J. (2009). Simulation modelling for food supply chain redesign: integrated decision making on product quality, sustainability and logistics. International Journal of Production Research, 47(23), 6611–6631. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • W. A. Rijpkema
    • 1
  • E. M. T. Hendrix
    • 2
  • R. Rossi
    • 3
  • J. G. A. J. van der Vorst
    • 1
  1. 1.Operations Research and Logistics GroupWageningen UniversityWageningenThe Netherlands
  2. 2.Department of Computer ArchitectureUniversity of MálagaMálagaSpain
  3. 3.Management Science and Business EconomicsUniversity of EdinburghEdinburghUK

Personalised recommendations