Annals of Operations Research

, Volume 222, Issue 1, pp 73–87 | Cite as

A cost minimization heuristic for the pooling problem

Article

Abstract

Pooling and blending are important operations in petrochemical and agricultural industries with high potential economic value. For instance, transporting the natural gas from the production sources to the exit terminals is a complex process where the end products in the terminals consist of a blend of natural gas from different sources. Constraints of particular importance, are restrictions regarding gas quality at terminals and the actual quality of the gas produced at sources. In many situations, intermediate pooling tanks are necessary, implying that an otherwise linear network flow model is transformed into a strongly NP-hard problem recognized as the pooling problem. In this paper, we propose an algorithm for computing good feasible solutions to the pooling problem. In particular, we give a greedy construction method that in each iteration solves a pooling problem instance with only one terminal. Computational experiments demonstrate the merit of the method, which, in the hardest instances, give considerably better results than commercially available local and global optimizers.

Keywords

Pooling problem Heuristic methods Network optimization 

Notes

Acknowledgements

This research was sponsored by the Norwegian Research Council, Gassco, and Statoil under contract 175967/S30.

References

  1. Adhya, N., Tawarmalani, M., & Sahinidis, N. V. (1999). A Lagrangian approach to the pooling problem. Industrial & Engineering Chemistry Research, 38(5), 1956–1972. CrossRefGoogle Scholar
  2. Alfaki, M., & Haugland, D. (2011). Comparison of discrete and continuous models for the pooling problem. In A. Caprara & S. Kontogiannis (Eds.), OpenAccess series in informatics (OASIcs): Vol. 20. 11th workshop on algorithmic approaches for transportation modelling, optimization, and systems (pp. 112–121). Wadern: Schloss Dagstuhl—Leibniz-Zentrum fuer Informatik. Google Scholar
  3. Alfaki, M., & Haugland, D. (2013a). A multi-commodity flow formulation for the generalized pooling problem. Journal of Global Optimization, 56(3), 917–937. doi: 10.1007/s10898-012-9890-7. CrossRefGoogle Scholar
  4. Alfaki, M., & Haugland, D. (2013b). Strong formulations for the pooling problem. Journal of Global Optimization, 56(3), 897–916. doi: 10.1007/s10898-012-9875-6. CrossRefGoogle Scholar
  5. Almutairi, H., & Elhedhli, S. (2009). A new Lagrangian approach to the pooling problem. Journal of Global Optimization, 45(2), 237–257. CrossRefGoogle Scholar
  6. Amos, F., Rönnqvist, M., & Gill, G. (1997). Modelling the pooling problem at the New Zealand Refining Company. Journal of the Operational Research Society, 48(8), 767–778. CrossRefGoogle Scholar
  7. Audet, C., Brimberg, J., Hansen, P., Le Digabel, S., & Mladenović, N. (2004). Pooling problem: alternate formulations and solution methods. Management Science, 50(6), 761–776. CrossRefGoogle Scholar
  8. Bagajewicz, M. (2000). A review of recent design procedures for water networks in refineries and process plants. Computers & Chemical Engineering, 24(9–10), 2093–2113. CrossRefGoogle Scholar
  9. Baker, T. E., & Lasdon, L. S. (1985). Successive linear programming at Exxon. Management Science, 31(3), 264–274. CrossRefGoogle Scholar
  10. Ben-Tal, A., Eiger, G., & Gershovitz, V. (1994). Global minimization by reducing the duality gap. Mathematical Programming, 63(2), 193–212. CrossRefGoogle Scholar
  11. DeWitt, C. W., Lasdon, L. S., Waren, A. D., Brenner, D. A., & Melhem, S. A. (1989). OMEGA: an improved gasoline blending system for Texaco. Interfaces, 19(1), 85–101. CrossRefGoogle Scholar
  12. Floudas, C. A., & Aggarwal, A. (1990). A decomposition strategy for global optimization search in the pooling problem. Operations Research Journal on Computing, 2(3), 225–235. Google Scholar
  13. Foulds, L. R., Haugland, D., & Jörnsten, K. (1992). A bilinear approach to the pooling problem. Optimization, 24(1), 165–180. CrossRefGoogle Scholar
  14. Gounaris, C. E., Misener, R., & Floudas, C. A. (2009). Computational comparison of piecewise–linear relaxation for pooling problems. Industrial & Engineering Chemistry Research, 48(12), 5742–5766. CrossRefGoogle Scholar
  15. Griffith, R. E., & Stewart, R. A. (1961). A nonlinear programming technique for the optimization of continuous processing systems. Management Science, 7, 379–392. CrossRefGoogle Scholar
  16. Haverly, C. A. (1978). Studies of the behavior of recursion for the pooling problem. ACM SIGMAP Bulletin, 25, 19–28. CrossRefGoogle Scholar
  17. Haverly, C. A. (1979). Behavior of recursion model-more studies. ACM SIGMAP Bulletin, 26, 22–28. CrossRefGoogle Scholar
  18. Li, X., Armagan, E., Tomasgard, A., & Barton, P. I. (2011). Stochastic pooling problem for natural gas production network design and operation under uncertainty. AIChE Journal, 57(8), 2120–2135. CrossRefGoogle Scholar
  19. Liberti, L., & Pantelides, C. C. (2006). An exact reformulation algorithm for large nonconvex NLPs involving bilinear terms. Journal of Global Optimization, 36(2), 161–189. CrossRefGoogle Scholar
  20. Main, R. A. (1993). Large recursion models: practical aspects of recursion techniques. In T. A. Ciriani & R. C. Leachman (Eds.), Optimization in industry: mathematical programming and modeling techniques in practice (pp. 241–249). New York: Wiley. Google Scholar
  21. McCormick, G. P. (1976). Computability of global solutions to factorable nonconvex programs: part I—convex underestimating problems. Mathematical Programming, 10(1), 147–175. CrossRefGoogle Scholar
  22. Meyer, C. A., & Floudas, C. A. (2006). Global optimization of a combinatorially complex generalized pooling problem. AIChE Journal, 52(3), 1027–1037. CrossRefGoogle Scholar
  23. Misener, R., & Floudas, C. A. (2010). Global optimization of large-scale generalized pooling problems: quadratically constrained MINLP models. Industrial & Engineering Chemistry Research, 49(11), 5424–5438. CrossRefGoogle Scholar
  24. Murtagh, B. A., & Saunders, M. A. (1982). A projected Lagrangian algorithm and its implementation for sparse nonlinear constraints. Mathematical Programming Study Constrained Optimization, 16, 84–117. CrossRefGoogle Scholar
  25. Palacios-Gomez, F., Lasdon, L. S., & Engquist, M. (1982). Nonlinear optimization by successive linear programming. Management Science, 28(10), 1106–1120. CrossRefGoogle Scholar
  26. Pham, V., Laird, C., & El-Halwagi, M. (2009). Convex hull discretization approach to the global optimization of pooling problems. Industrial & Engineering Chemistry Research, 48(4), 1973–1979. CrossRefGoogle Scholar
  27. Quesada, I., & Grossmann, I. E. (1995). Global optimization of bilinear process networks with multi-component flows. Computers & Chemical Engineering, 19(12), 1219–1242. CrossRefGoogle Scholar
  28. Rigby, B., Lasdon, L. S., & Waren, A. D. (1995). The evolution of Texaco’s blending systems: from OMEGA to StarBlend. Interfaces, 25(5), 4–83. CrossRefGoogle Scholar
  29. Rømo, F., Tomasgard, A., Hellemo, L., Fodstad, M., Eidesen, B. H., & Pedersen, B. (2009). Optimizing the Norwegian natural gas production and transport. Interfaces, 39(1), 46–56. CrossRefGoogle Scholar
  30. Sarker, R. A., & Gunn, E. A. (1997). A simple SLP algorithm for solving a class of nonlinear programs. European Journal of Operational Research, 101(1), 140–154. CrossRefGoogle Scholar
  31. Sherali, H. D., & Adams, W. P. (1999). A reformulation-linearization technique for solving discrete and continuous nonconvex problems. Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  32. Simon, J. D., & Azma, H. M. (1983). Exxon experience with large scale linear and nonlinear programming applications. Computers & Chemical Engineering, 7(5), 605–614. CrossRefGoogle Scholar
  33. Tawarmalani, M., & Sahinidis, N. V. (2002). Convexification and global optimization in continuous and mixed-integer nonlinear programming: theory, algorithms, software, and applications. Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  34. Tawarmalani, M., & Sahinidis, N. V. (2005). A polyhedral branch-and-cut approach to global optimization. Mathematical Programming, 103(2), 225–249. CrossRefGoogle Scholar
  35. Tomasgard, A., Rømo, F., Fodstad, M., & Midthun, K. (2007). Optimization models for the natural gas value chain. In G. Hasle, K. A. Lie, & E. Quak (Eds.), Geometric modelling, numerical simulation, and optimization: applied mathematics at SINTEF (pp. 521–558). Berlin: Springer. CrossRefGoogle Scholar
  36. Visweswaran, V., & Floudas, C. A. (1990). A global optimization algorithm (GOP) for certain classes of nonconvex NLPs—II. Application of theory and test problems. Computers & Chemical Engineering, 14(12), 1419–1434. CrossRefGoogle Scholar
  37. Zhang, J. H., Kim, N. H., & Lasdon, L. (1985). An improved successive linear programming algorithm. Management Science, 31(10), 1312–1331. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of InformaticsUniversity of BergenBergenNorway

Personalised recommendations