Annals of Operations Research

, Volume 222, Issue 1, pp 317–339 | Cite as

Enumeration of weighted games with minimum and an analysis of voting power for bipartite complete games with minimum

Article

Abstract

This paper is a twofold contribution. First, it contributes to the problem of enumerating some classes of simple games and in particular provides the number of weighted games with minimum and the number of weighted games for the dual class as well. Second, we focus on the special case of bipartite complete games with minimum, and we compare and rank these games according to the behavior of some efficient power indices of players of type 1 (or of type 2). The main result of this second part establishes all allowable rankings of these games when the Shapley-Shubik power index is used on players of type 1.

Keywords

Simple game Weighted and complete games Enumerations Shapley-Shubik power index Banzhaf power indices 

References

  1. Alonso-Meijide, J. M., & Bowles, C. (2005). Generating functions for coalitional power indices: an application to the IMF. Annals of Operations Research, 137, 21–44. CrossRefGoogle Scholar
  2. Banzhaf, J. F. (1965). Weighted voting doesn’t work: a mathematical analysis. Rutgers Law Review, 19, 317–343. Google Scholar
  3. Brickell, E. F. (1989). Some ideal secret sharing schemes. Journal of Combinatorial Mathematics and Combinatorial Computing, 9, 105–113. Google Scholar
  4. Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155. CrossRefGoogle Scholar
  5. Carreras, F., & Freixas, J. (2008). On ordinal equivalence of power measures given by regular semivalues. Mathematical Social Sciences, 55, 221–234. CrossRefGoogle Scholar
  6. Carreras, F., Freixas, J., & Puente, M. A. (2003). Semivalues as power indices. European Journal of Operational Research, 149, 676–687. CrossRefGoogle Scholar
  7. de Keijzer, B., Klos, T., & Zhang, Y. (2010). Enumeration and exact design of weighted voting games. In Proceedings of the 9th international conference on autonomous agents and multiagent systems (Vol. 1, pp. 391–398). Google Scholar
  8. Diffo Lambo, L., & Moulen, J. (2002). Ordinal equivalence of power notions in voting games. Theory and Decision, 53, 313–325. CrossRefGoogle Scholar
  9. Dubey, P., & Shapley, L. S. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131. CrossRefGoogle Scholar
  10. Felsenthal, D. S., & Machover, M. (1998). The measurement of voting power: theory and practice, problems and paradoxes. Cheltenham: Edward Elgar. CrossRefGoogle Scholar
  11. Freixas, J. (1997). Different ways to represent weighted majority games. Top, 5, 201–212. CrossRefGoogle Scholar
  12. Freixas, J. (2004). The dimension for the European Union Council under the Nice rules. European Journal of Operational Research, 156, 415–419. CrossRefGoogle Scholar
  13. Freixas, J. (2010). On ordinal equivalence of the Shapley and Banzhaf values for cooperative games. International Journal of Game Theory, 39, 513–527. CrossRefGoogle Scholar
  14. Freixas, J., & Molinero, X. (2010). Weighted games without a unique minimal representation in integers. Optimization Methods & Software, 25, 203–215. CrossRefGoogle Scholar
  15. Freixas, J., & Puente, M. A. (1998). Complete games with minimum. Annals of Operations Research, 84, 97–109. CrossRefGoogle Scholar
  16. Freixas, J., & Puente, M. A. (2008). Dimension of complete simple games with minimum. European Journal of Operational Research, 188, 555–568. CrossRefGoogle Scholar
  17. Freixas, J., Molinero, X., & Roura, S. (2012b). Complete voting systems with two types of voters: weightedness and counting. Annals of Operations Research, 193, 273–289. CrossRefGoogle Scholar
  18. Gvozdeva, T., & Slinko, A. (2011). Weighted and roughly weighted simple games. Mathematical Social Sciences, 61, 20–30. CrossRefGoogle Scholar
  19. Gvozdeva, T., Hameed, A., & Slinko, A. (2013). Weightedness and structural characterization of hierarchical simple games. Mathematical Social Sciences. doi:10.1016/j.mathsocsci.2012.11.007. Google Scholar
  20. Isbell, J. R. (1956). A class of majority games. Quarterly Journal of Mathematics, 7, 183–187. CrossRefGoogle Scholar
  21. Isbell, J. R. (1958). A class of simple games. Duke Mathematical Journal, 25, 423–439. CrossRefGoogle Scholar
  22. Kilgour, D. M. (1983). A formal analysis of the amending formula of Canada’s Constitution Act. Canadian Journal of Political Science, 16, 771–777. CrossRefGoogle Scholar
  23. Korshunov, A. D. (2003). Monotone Boolean functions. Uspekhi Matematičeskih Nauk, 58(5(353)), 89–162. CrossRefGoogle Scholar
  24. Krohn, I., & Sudhölter, P. (1995). Directed and weighted majority games. Mathematical Methods of Operations Research (ZOR), 42, 189–216. CrossRefGoogle Scholar
  25. Kurz, S. (2012). On minimum sum representations for weighted voting games. Annals of Operations Research, 196, 361–369. CrossRefGoogle Scholar
  26. Kurz, S., & Tautenhahn, N. (2012). On Dedekind’s problem for complete simple games. International Journal of Game Theory. doi:10.1007/s00182-012-0327-9. Google Scholar
  27. Leech, D. (2002a). Designing the voting system for the council of the European Union. Public Choice, 113(3–4), 437–464. CrossRefGoogle Scholar
  28. Leech, D. (2002b). Voting power in the governance of the International Monetary fund. Annals of Operations Research, 109, 375–397. CrossRefGoogle Scholar
  29. Maschler, M., & Peleg, B. (1966). A characterization, existence proof, and dimension bounds for the kernel of a game. Pacific Journal of Mathematics, 18, 289–328. CrossRefGoogle Scholar
  30. May, K. (1952). A set of independent, necessary and sufficient conditions for simple majority decision. Econometrica, 20, 680–684. CrossRefGoogle Scholar
  31. Morriss, P. (2002). Power: a philosophical analysis (2nd ed.). Manchester: Manchester University Press. Google Scholar
  32. Muroga, S., Toda, I., & Kondo, M. (1962). Majority decision functions of up to six variables. Mathematics of Computation, 16, 459–472. CrossRefGoogle Scholar
  33. Owen, G. (1978). Characterization of the Banzhaf–Coleman index. SIAM Journal on Applied Mathematics, 35, 315–327. CrossRefGoogle Scholar
  34. Peled, U. N., & Simeone, B. (1985). Polynomial-time algorithms for regular set-covering and threshold synthesis. Discrete Applied Mathematics, 12, 57–69. CrossRefGoogle Scholar
  35. Shapley, L. S. (1953). A value for n-person games. In A. W. Tucker & H. W. Kuhn (Eds.), Contributions to the theory of games II (pp. 307–317). Princeton: Princeton University Press. Google Scholar
  36. Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system. American Political Science Review, 48, 787–792. CrossRefGoogle Scholar
  37. Simmons, G. J. (1990). How to (really) share a secret. In Proceedings of the 8th annual international cryptology conference on advances in cryptology (pp. 390–448). London: Springer. Google Scholar
  38. Stinson, D. R. (1992). An explanation of secret sharing schemes. Designs, Codes and Cryptography, 2, 357–390. CrossRefGoogle Scholar
  39. Straffin, P. D. (1982). Power indices in politics. In S. J. Brahms, S. J. Lucas, & P. D. Straffin (Eds.), Political and related models (Vol. 2). New York: Springer. Google Scholar
  40. Tassa, T. (2007). Hierarchical threshold secret sharing. Journal of Cryptology, 20, 237–264. CrossRefGoogle Scholar
  41. Taylor, A. D., & Pacelli, A. (2008). Mathematics and politics (2nd ed.). New York: Springer. CrossRefGoogle Scholar
  42. Taylor, A. D., & Zwicker, W. S. (1999). Simple games: desirability relations, trading, and pseudoweightings. New Jersey: Princeton University Press. Google Scholar
  43. Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press. Google Scholar
  44. Young, J. M. (1985). Monotonic solutions of cooperative games. International Journal of Game Theory, 14, 65–72. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Department of Applied Mathematics III and High Engineering School (Manresa Campus)Technical University of CataloniaBarcelonaSpain
  2. 2.Department of Mathematics, Physics and Computer ScienceUniversity of BayreuthBayreuthGermany

Personalised recommendations