Annals of Operations Research

, Volume 206, Issue 1, pp 241–264 | Cite as

An effective heuristic for the two-dimensional irregular bin packing problem

  • Eunice López-Camacho
  • Gabriela Ochoa
  • Hugo Terashima-Marín
  • Edmund K. Burke
Article

Abstract

This paper proposes an adaptation, to the two-dimensional irregular bin packing problem of the Djang and Finch heuristic (DJD), originally designed for the one-dimensional bin packing problem. In the two-dimensional case, not only is it the case that the piece’s size is important but its shape also has a significant influence. Therefore, DJD as a selection heuristic has to be paired with a placement heuristic to completely construct a solution to the underlying packing problem. A successful adaptation of the DJD requires a routine to reduce computational costs, which is also proposed and successfully tested in this paper. Results, on a wide variety of instance types with convex polygons, are found to be significantly better than those produced by more conventional selection heuristics.

Keywords

2D bin packing problem Irregular packing Heuristics Djang and Finch heuristic 

References

  1. Allen, S. D., Burke, E. K., & Kendall, G. (2011). A hybrid placement strategy for the three-dimensional strip packing problem. European Journal of Operational Research, 209(3), 219–227. doi:10.1016/j.ejor.2010.09.023. CrossRefGoogle Scholar
  2. Bennell, J. A., & Dowsland, K. A. (2001). Hybridising tabu search with optimisation techniques for irregular stock cutting. Management Science, 47(8), 1160–1172. CrossRefGoogle Scholar
  3. Bennell, J. A., & Oliveira, J. F. (2008). The geometry of nesting problems: a tutorial. European Journal of Operational Research, 184(2), 397–415. CrossRefGoogle Scholar
  4. Bennell, J. A., & Oliveira, J. F. (2009). A tutorial in irregular shape packing problems. Journal of the Operational Research Society, 60(S1), S93–S105. CrossRefGoogle Scholar
  5. Bennell, J. A., & Song, X. (2010). A beam search implementation for the irregular shape packing problem. Journal of Heuristics, 16(2), 167–188. CrossRefGoogle Scholar
  6. Bilgin, B., Özcan, E., & Korkmaz, E. E. (2006). An experimental study on hyper-heuristics and exam timetabling. In Proceedings of the 6th international conference on practice and theory of automated timetabling (pp. 123–140). Google Scholar
  7. Bounsaythip, C., & Maouche, S. (1997). Irregular shape nesting and placing with evolutionary approach. In IEEE international conference on systems, man and cybernetics (Vol. 4, pp. 3425–3430). Google Scholar
  8. Burke, E. K., & Kendall, G. (1999a). Applying ant algorithms and the no fit polygon to the nesting problem. In Australian joint conference on artificial intelligence (pp. 453–464). London: Springer. Google Scholar
  9. Burke, E. K., & Kendall, G. (1999b). Implementation and performance improvement of the evaluation of a two dimensional bin packing problem using the no fit polygon (Tech. Rep.). University of Nottingham. Report ASAP99001. Google Scholar
  10. Burke, E. K., Hellier, R. S. R., Kendall, G., & Whitwell, G. (2006). A new bottom-left-fill heuristic algorithm for the two-dimensional irregular packing problem. Operations Research, 54(3), 587–601. CrossRefGoogle Scholar
  11. Burke, E. K., Hellier, R. S. R., Kendall, G., & Whitwell, G. (2007). Complete and robust no-fit polygon generation for the irregular stock cutting problem. European Journal of Operational Research, 179(1), 27–49. CrossRefGoogle Scholar
  12. Dowsland, K. A., & Dowsland, W. B. (1995). Solution approaches to irregular nesting problems. European Journal of Operational Research, 84, 506–521. CrossRefGoogle Scholar
  13. Dowsland, K. A., Dowsland, W. B., & Bennell, J. A. (1998). Jostling for position: local improvement for irregular cutting patterns. Journal of the Operational Research Society, 49(6), 647–658. Google Scholar
  14. Dowsland, K. A., Vaid, S., & Dowsland, W. B. (2002). An algorithm for polygon placement using a bottom-left strategy. European Journal of Operational Research, 141(2), 371–381. CrossRefGoogle Scholar
  15. Dychoff, H. (1990). A typology of cutting and packing problems. European Journal of Operational Research, 44, 145–159. CrossRefGoogle Scholar
  16. Gomes, A. M., & Oliveira, J. F. (2002). A 2-exchange heuristic for nesting problems. European Journal of Operational Research, 141, 359–370. CrossRefGoogle Scholar
  17. Hifi, M., & M’Hallah, R. (2003). A hybrid algorithm for the two-dimensional layout problem: the cases of regular and irregular shapes. International Transactions in Operational Research, 10, 195–216. CrossRefGoogle Scholar
  18. Hopper, E., & Turton, B. C. H. (2001). A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artificial Intelligence Review, 16(4), 257–300. doi:10.1023/A:1012590107280. CrossRefGoogle Scholar
  19. Hopper, E., & Turton, B. C. H. (2002). An empirical study of meta-heuristics applied to 2D rectangular bin packing—part II. Studia Informatica Universalis, 2(1), 93–106. Google Scholar
  20. Hu-yao, L., & Yuan-jun, H. (2006). NFP-based nesting algorithm for irregular shapes. In Symposium on applied computing (pp. 963–967). New York: ACM. Google Scholar
  21. Kos, L., & Duhovnik, J. (2000). Rod cutting optimization with store utilization. In International design conference, Dubrovnik, Croatia (pp. 313–318). Google Scholar
  22. Lamousin, H., & Waggenspack, J. (1997). Nesting of two-dimensional irregular parts using a shape reasoning heuristic. Computer-Aided Design, 29(3), 221–238. doi:10.1016/S0010-4485(96)00065-6. CrossRefGoogle Scholar
  23. Lamousin Jr., H. J., & Dobson, G. T. (1996). Nesting of complex 2-D parts within irregular boundaries. Journal of Manufacturing Science and Engineering, 118(4), 615–622. doi:10.1115/1.2831075. CrossRefGoogle Scholar
  24. Marín-Blázquez, J. G., & Schulenburg, S. (2006). Multi-step environment learning classifier systems applied to hyper-heuristics. In Lecture notes in computer science. Conference on genetic and evolutionary computation (pp. 1521–1528). New York: ACM. Google Scholar
  25. Okano, H. (2002). A scanline-based algorithm for the 2D free-form bin packing problem. Journal of the Operations Research Society of Japan, 45(2), 145–161. Google Scholar
  26. Pillay, N. (2012). A study of evolutionary algorithm selection hyper-heuristics for the one-dimensional bin-packing problem. South African Computer Journal, 48, 31–40. Google Scholar
  27. Ramesh, R. (2001). A generic approach for nesting of 2-D parts in 2-D sheets using genetic and heuristic algorithms. Computer-Aided Design, 33(12), 879–891. doi:10.1016/S0010-4485(00)00112-3. CrossRefGoogle Scholar
  28. Ross, P. (2005). Hyper-heuristics. In E. K. Burke & G. Kendall (Eds.), Search methodologies: introductory tutorials in optimization and decision support techniques (pp. 529–556). New York: Springer. Google Scholar
  29. Ross, P., & Marín-Blázquez, J. G. (2005). Constructive hyper-heuristics in class timetabling. IEEE Congress on Evolutionary Computation, 2, 1493–1500. Google Scholar
  30. Ross, P., Schulenburg, S., Marín-Blázquez, J. G., & Hart, E. (2002). Hyper-heuristics: learning to combine simple heuristics in bin-packing problems. In Lecture notes in computer science. Conference on genetic and evolutionary computation (pp. 942–948). San Francisco: Morgan Kaufmann Google Scholar
  31. Ross, P., Marín-Blázquez, J. G., Schulenburg, S., & Hart, E. (2003). Learning a procedure that can solve hard bin-packing problems: a new GA-based approach to hyper-heuristics. In Lecture notes in computer science: Vol. 2724. Conference on genetic and evolutionary computation (pp. 1295–1306). Berlin: Springer. Google Scholar
  32. Sim, K., Hart, E., & Paechter, B. (2012). A hyper-heuristic classifier for one dimensional bin packing problems: improving classification accuracy by attribute evolution. In C. A. C. Coello, V. Cutello, K. Deb, S. Forrest, G. Nicosia, & M. Pavone (Eds.), Lecture notes in computer science: Vol. 7492. Parallel problem solving from nature—PPSN XII (pp. 348–357). Berlin: Springer. CrossRefGoogle Scholar
  33. Terashima-Marín, H., Flores-Álvarez, E. J., & Ross, P. (2005a). Hyper-heuristics and classifier systems for solving 2D-regular cutting stock problems. In Lecture notes in computer science. Conference on genetic and evolutionary computation (pp. 637–643). New York: ACM. Google Scholar
  34. Terashima-Marín, H., Tavernier-Deloya, J. M., & Valenzuela-Rendón, M. (2005b). Scheduling transportation events with grouping genetic algorithms and the heuristic DJD. In A. Gelbukh, L. De Albornoz, & H. Terashima-Marín (Eds.), Lecture notes in computer science: Vol. 3789. MICAI 2005: advances in artificial intelligence (pp. 185–194). Berlin: Springer. CrossRefGoogle Scholar
  35. Terashima-Marín, H., Farías-Zárate, C. J., Ross, P., & Valenzuela-Rendón, M. (2006). A GA-based method to produce generalized hyper-heuristics for the 2D-regular cutting stock problem. In Lecture notes in computer science. Conference on genetic and evolutionary computation (pp. 591–598). New York: ACM. Google Scholar
  36. Terashima-Marín, H., Ross, P., Farías-Zárate, C. J., López-Camacho, E., & Valenzuela-Rendón, M. (2010). Generalized hyper-heuristics for solving 2D regular and irregular packing problems. Annals of Operations Research, 179, 369–392. doi:10.1007/s10479-008-0475-2. CrossRefGoogle Scholar
  37. Uday, A., Goodman, E. D., & Debnath, A. A. (2001). Nesting of irregular shapes using feature matching and parallel genetic algorithms. In E. D. Goodman (Ed.), Genetic and evolutionary computation conference. Late breaking papers (pp. 429–434). Google Scholar
  38. Wäscher, G., Hausner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183(3), 1109–1130. Forthcoming special issue on cutting, packing and related problems. CrossRefGoogle Scholar
  39. Whelan, P. F., & Batchelor, B. G. (1992). Development of a vision system for the flexible packing of random shapes. In Machine vision applications, architectures, and systems integration, proc. SPIE (pp. 223–232). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  • Eunice López-Camacho
    • 1
  • Gabriela Ochoa
    • 2
  • Hugo Terashima-Marín
    • 1
  • Edmund K. Burke
    • 2
  1. 1.Tecnológico de MonterreyMonterreyMexico
  2. 2.Computing Science and MathematicsUniversity of StirlingStirlingUK

Personalised recommendations