Advertisement

Annals of Operations Research

, Volume 206, Issue 1, pp 23–37 | Cite as

Complexity of solution structures in nonlinear pricing

  • Kimmo Berg
Article

Abstract

This paper characterizes and enumerates the possible solution structures in nonlinear pricing problem when the number of buyer types is given. It is shown that the single-crossing property, which is a standard assumption in the literature, reduces the complexity of solving the problem dramatically. The number of possible solution structures is important when the pricing problem is solved under limited information.

Keywords

Nonlinear pricing Screening Complexity Combinatorics Single-crossing condition Graph theory 

Notes

Acknowledgements

The author is grateful to Mirko Ruokokoski and Arttu Klemettilä for the helpful comments and suggestions. The author would like to thank the two anonymous reviewers for their valuable suggestions and corrections.

References

  1. Andersson, T. (2005). Profit maximizing nonlinear pricing. Economics Letters, 88(1), 135–139. CrossRefGoogle Scholar
  2. Andersson, T. (2008). Efficiency properties of non-linear pricing schedules without the single-crossing condition. Economics Letters, 99(2), 364–366. CrossRefGoogle Scholar
  3. Araujo, A., & Moreira, H. (1999). Adverse selection problems without the single crossing condition. Econometric Society World Congress 2000 Contributed Papers 1874. Google Scholar
  4. Armstrong, M. (1996). Multiproduct nonlinear pricing. Econometrica, 64, 51–75. CrossRefGoogle Scholar
  5. Basov, S. (2005). Multidimensional screening. Heidelberg: Springer. Google Scholar
  6. Berg, K., & Ehtamo, H. (2008). Multidimensional screening: online computation and limited information. In ACM international conference proceeding series: Vol. 42. ICEC 2008: proceedings of the 10th international conference on electronic commerce, Austria: Innsbruck. Google Scholar
  7. Berg, K., & Ehtamo, H. (2009). Learning in nonlinear pricing with unknown utility functions. Annals of Operations Research, 172(1), 375–392. CrossRefGoogle Scholar
  8. Berg, K., & Ehtamo, H. (2010). Interpretation of Lagrange multipliers in nonlinear pricing problem. Optimization Letters, 4(2), 275–285. CrossRefGoogle Scholar
  9. Berg, K., & Ehtamo, H. (2012). Continuous learning methods for two-buyer pricing problem. Mathematical Methods of Operations Research, 75(3), 287–304. CrossRefGoogle Scholar
  10. Bertsekas, D. (1999). Nonlinear programming. Belmont: Athena Scientific. Google Scholar
  11. Brito, D. L., Hamilton, J. H., Slutsky, S. M., & Stiglitz, J. E. (1990). Pareto efficient tax structures. Oxford Economic Papers, 42, 61–77. Google Scholar
  12. Conitzer, V., & Sandholm, T. (2002). Complexity of mechanism design. In Proceedings of the 18th annual conference on uncertainty in artificial intelligence (UAI-02) (pp. 103–111). Google Scholar
  13. Edlin, A. S., & Shannon, C. (1998). Strict single crossing and the strict Spence–Mirrlees condition: a comment on monotone comparative statics. Econometrica, 66(6), 1417–1425. CrossRefGoogle Scholar
  14. Ehtamo, H., Berg, K., & Kitti, M. (2010). An adjustment scheme for nonlinear pricing problem with two buyers. European Journal of Operational Research, 201, 259–266. CrossRefGoogle Scholar
  15. Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: MIT Press. Google Scholar
  16. Guesnerie, R., & Seade, J. (1982). Nonlinear pricing in a finite economy. Journal of Public Economics, 17, 157–159. CrossRefGoogle Scholar
  17. Kokovin, S., Nahata, B., & Zhelobodko, E. (2011). All solution graphs in multidimensional screening (Working paper). Google Scholar
  18. Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. New York: Oxford University Press. Google Scholar
  19. Maskin, E., & Riley, J. (1984). Monopoly with incomplete information. The Rand Journal of Economics, 15, 171–196. CrossRefGoogle Scholar
  20. McAfee, R. P., & McMillan, J. (1988). Multidimensional incentive compatibility and mechanism design. Journal of Economic Theory, 46, 335–354. CrossRefGoogle Scholar
  21. Mussa, M., & Rosen, S. (1978). Monopoly and product quality. Journal of Economic Theory, 18, 301–317. CrossRefGoogle Scholar
  22. Nahata, B., Kokovin, S., & Zhelobodko, E. (2001). Self-selection under non-ordered valuations: type-splitting, envy-cycles, rationing and efficiency (Working paper). Department of Economics, University of Louisville. Google Scholar
  23. Nahata, B., Kokovin, S., & Zhelobodko, E. (2004). Solution structures in non-ordered discrete screening problems: trees, stars and cycles (Working paper). Department of Economics, University of Louisville. Google Scholar
  24. Nahata, B., Kokovin, S., & Zhelobodko, E. (2006). Efficiency, over and underprovisioning in package pricing: how to diagnose? (Working paper). Department of Economics, University of Louisville. Google Scholar
  25. Rochet, J.-C., & Chone, P. (1998). Ironing, sweeping, and multidimensional screening. Econometrica, 66, 783–826. CrossRefGoogle Scholar
  26. Rochet, J.-C., & Stole, L. A. (2003). The economics of multidimensional screening. In M. Dewatripont, L. P. Hansen, & S. J. Turnovsky (Eds.), Advances in economics and econometrics, theory and applications (Vol. 1, pp. 150–197). Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  27. Sloane, N. J. A. (2008). The on-line encyclopedia of integer sequences. http://www.research.att.com/~njas/sequences/.
  28. Spence, M. (1977). Nonlinear prices and economic welfare. Journal of Public Economics, 8, 1–18. CrossRefGoogle Scholar
  29. Spence, M. A. (1980). Multi-product quantity-dependent prices and profitability constraints. Review of Economic Studies, 47, 821–841. CrossRefGoogle Scholar
  30. Wilson, R. B. (1995). Nonlinear pricing and mechanism design. In H. Amman, D. Kendrick, & J. Rust (Eds.), Handbook of computational economics (Vol. 1, pp. 249–289). Amsterdam: Elsevier. Google Scholar
  31. Wilson, R. (1993). Nonlinear pricing. London: Oxford University Press. Google Scholar

Copyright information

© Springer Science+Business Media New York 2013

Authors and Affiliations

  1. 1.Systems Analysis LaboratoryAalto University School of ScienceAaltoFinland

Personalised recommendations