Annals of Operations Research

, Volume 206, Issue 1, pp 115–145 | Cite as

Flow shop scheduling with peak power consumption constraints

  • Kan Fang
  • Nelson A. Uhan
  • Fu Zhao
  • John W. Sutherland
Article

Abstract

We study scheduling as a means to address the increasing energy concerns in manufacturing enterprises. In particular, we consider a flow shop scheduling problem with a restriction on peak power consumption, in addition to the traditional time-based objectives. We investigate both mathematical programming and combinatorial approaches to this scheduling problem, and test our approaches with instances arising from the manufacturing of cast iron plates.

Keywords

Scheduling Flow shop Energy Peak power consumption Integer programming Combinatorial optimization 

References

  1. Albers, S. (2010). Energy-efficient algorithms. Communications of the ACM, 53(5), 86–96. CrossRefGoogle Scholar
  2. Babu, C. A., & Ashok, S. (2008). Peak load management in electrolytic process industries. IEEE Transactions on Power Systems, 23(2), 399–405. CrossRefGoogle Scholar
  3. Bansal, N., Kimbrel, T., & Pruhs, K. (2007). Speed scaling to manage energy and temperature. Journal of the ACM, 54(1), 1–39. CrossRefGoogle Scholar
  4. Bansal, N., Chan, H. L., & Pruhs, K. (2009). Speed scaling with an arbitrary power function. In Proceedings of the 20th annual ACM-SIAM symposium on discrete algorithms (pp. 693–701). Google Scholar
  5. Bouzid, W. (2005). Cutting parameter optimization to minimize production time in high speed turning. Journal of Materials Processing Technology, 161(3), 388–395. CrossRefGoogle Scholar
  6. Cochran, R., Hankendi, C., Coskun, A., & Reda, S. (2011). Pack & cap: adaptive DVFS and thread packing under power caps. In Proceedings of the 44th annual IEEE/ACM international symposium on microarchitecture. Google Scholar
  7. Dahmus, J. B., & Gutowski, T. G. (2004). An environmental analysis of machining. In ASME 2004 international mechanical engineering congress and exposition (pp. 643–652). Google Scholar
  8. Demidenko, V. M. (1979). The traveling salesman problem with asymmetric matrices. Izvestiâ Akademii Nauk BSSR. Seriâ Fiziko-Matematičeskih Nauk, 1, 29–35 (in Russian). Google Scholar
  9. Drake, R., Yildirim, M. B., Twomey, J., Whitman, L., Ahmad, J., & Lodhia, P. (2006). Data collection framework on energy consumption in manufacturing. In IIE annual conference and expo 2006. Google Scholar
  10. Fang, K., Uhan, N. A., Zhao, F., & Sutherland, J. W. (2011). A new approach to scheduling in manufacturing for power consumption and carbon footprint reduction. Journal of Manufacturing Systems, 30(4), 234–240. CrossRefGoogle Scholar
  11. Felter, W., Rajamani, K., Keller, T., & Rusu, C. (2005). A performance-conserving approach for reducing peak power consumption in server systems. In Proceedings of the 19th annual international conference on supercomputing (pp. 293–302). CrossRefGoogle Scholar
  12. Garey, M. R., Johnson, D. S., & Sethi, R. (1976). The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2), 117–129. CrossRefGoogle Scholar
  13. Gutowski, T., Murphy, C., Allen, D., Bauer, D., Bras, B., Piwonka, T., Sheng, P., Sutherland, J., Thurston, D., & Wolff, E. (2005). Environmentally benign manufacturing: observations from Japan, Europe and the United States. Journal of Cleaner Production, 13, 1–17. CrossRefGoogle Scholar
  14. Irani, S., & Pruhs, K. R. (2005). Algorithmic problems in power management. SIGACT News, 36(2), 63–76. CrossRefGoogle Scholar
  15. Keha, A. B., Khowala, K., & Fowler, J. W. (2009). Mixed integer programming formulations for single machine scheduling problems. Computers & Industrial Engineering, 56(1), 357–367. CrossRefGoogle Scholar
  16. Kontorinis, V., Shayan, A., Tullsen, D. M., & Kumar, R. (2009). Reducing peak power with a table-driven adaptive processor core. In Proceedings of the 42nd annual IEEE/ACM international symposium on microarchitecture (pp. 189–200). CrossRefGoogle Scholar
  17. Kwon, W. C., & Kim, T. (2005). Optimal voltage allocation techniques for dynamically variable voltage processors. ACM Transactions on Embedded Computing Systems, 4(1), 211–230. CrossRefGoogle Scholar
  18. Lasserre, J. B., & Queyranne, M. (1992). Generic scheduling polyhedra and a new mixed-integer formulation for single-machine scheduling. In Proceedings of the 2nd integer programming and combinatorial optimization conference (pp. 136–149). Google Scholar
  19. Manne, A. S. (1960). On the job-shop scheduling problem. Operations Research, 8(2), 219–223. CrossRefGoogle Scholar
  20. Mouzon, G., & Yildirim, M. B. (2008). A framework to minimise total energy consumption and total tardiness on a single machine. International Journal of Sustainable Engineering, 1(2), 105–116. CrossRefGoogle Scholar
  21. Mouzon, G., Yildirim, M. B., & Twomey, J. (2007). Operational methods for minimization of energy consumption of manufacturing equipment. International Journal of Production Research, 45(18–19), 4247–4271. CrossRefGoogle Scholar
  22. Mudge, T. (2001). Power: a first-class architectural design constraint. Computer, 34(4), 52–58. CrossRefGoogle Scholar
  23. Oberg, E., Jones, F. D., Horton, H. L., & Ryffel, H. H. (2008). Machinery’s handbook (28th ed.). New York: Industrial Press. Google Scholar
  24. Reddi, S. S., & Ramamoorthy, C. V. (1972). On the flow-shop sequencing problem with no wait in process. Operational Research Quarterly, 23(3), 323–331. CrossRefGoogle Scholar
  25. Stafford, E. F. Jr., Tseng, F. T., & Gupta, J. N. D. (2005). Comparative evaluation of MILP flowshop models. Journal of the Operational Research Society, 56, 88–101. CrossRefGoogle Scholar
  26. Thörnblad, K., Strömberg, A. B., & Patriksson, M. (2010). Optimization of schedules for a multitask production cell. In The 22nd annual NOFOMA conference proceedings. Google Scholar
  27. Unlu, Y., & Mason, S. J. (2010). Evaluation of mixed integer programming formulations for non-preemptive parallel machine scheduling problems. Computers & Industrial Engineering, 58(4), 785–800. CrossRefGoogle Scholar
  28. Wagner, H. M. (1959). An integer linear-programming model for machine scheduling. Naval Research Logistics Quarterly, 6(2), 134–140. CrossRefGoogle Scholar
  29. Yao, F., Demers, A., & Shenker, S. (1995). A scheduling model for reduced CPU energy. In Proceedings of the 36th annual symposium on foundations of computer science (pp. 374–382). Google Scholar

Copyright information

© US Government 2013

Authors and Affiliations

  • Kan Fang
    • 1
  • Nelson A. Uhan
    • 2
  • Fu Zhao
    • 3
  • John W. Sutherland
    • 4
  1. 1.School of Industrial EngineeringPurdue UniversityWest LafayetteUSA
  2. 2.Mathematics DepartmentUnited States Naval AcademyAnnapolisUSA
  3. 3.Division of Environmental and Ecological Engineering and School of Mechanical EngineeringPurdue UniversityWest LafayetteUSA
  4. 4.Division of Environmental and Ecological EngineeringPurdue UniversityWest LafayetteUSA

Personalised recommendations