# Heuristic and exact solutions to the inverse power index problem for small voting bodies

- 191 Downloads
- 7 Citations

## Abstract

Power indices are mappings that quantify the influence of the members of a voting body on collective decisions a priori. Their nonlinearity and discontinuity makes it difficult to compute inverse images, i.e., to determine a voting system which induces a power distribution as close as possible to a desired one. The paper considers approximations to this inverse problem for the Penrose-Banzhaf index by hill-climbing algorithms and exact solutions which are obtained by enumeration and integer linear programming techniques. They are compared to the results of three simple solution heuristics. The heuristics perform well in absolute terms but can be improved upon very considerably in relative terms. The findings complement known asymptotic results for large voting bodies and may improve termination criteria for local search algorithms.

## Keywords

Electoral systems Simple games Weighted voting games Square root rule Penrose limit theorem Penrose-Banzhaf index Institutional design## References

- Alon, N., & Edelman, P. H. (2010). The inverse Banzhaf problem.
*Social Choice and Welfare*,*34*(3), 371–377. CrossRefGoogle Scholar - Aziz, H., Paterson, M., & Leech, D. (2007). Efficient algorithm for designing weighted voting games. In
*IEEE international, multitopic conference, 2007, INMIC 2007*(pp. 1–6). Available at http://eprints.dcs.warwick.ac.uk/1547/. Google Scholar - Banzhaf, J. F. (1965). Weighted voting doesn’t work: a mathematical analysis.
*Rutgers Law Review*,*19*(2), 317–343. Google Scholar - Carreras, F., & Freixas, J. (1996). Complete simple games.
*Mathematical Social Sciences*,*32*(2), 139–155. CrossRefGoogle Scholar - Chang, P.-L., Chua, V. C., & Machover, M. (2006). L.S. Penrose’s limit theorem: tests by simulation.
*Mathematical Social Sciences*,*51*(1), 90–106. CrossRefGoogle Scholar - De Nijs, F., & Wilmer, D. (2012).
*Evaluation and improvement of Laruelle-Widgrén inverse Banzhaf approximation*. Mimeo. Available at http://arxiv.org/abs/1206.1145. - Deĭneko, V. G., & Woeginger, G. J. (2006). On the dimension of simple monotonic games.
*European Journal of Operational Research*,*170*(1), 315–318. CrossRefGoogle Scholar - Dubey, P., & Shapley, L. (1979). Mathematical properties of the Banzhaf power index.
*Mathematics of Operations Research*,*4*(2), 99–131. CrossRefGoogle Scholar - Fatima, S., Wooldridge, M., & Jennings, N. (2008). An anytime approximation method for the inverse Shapley value problem. In
*Proceedings of the 7th international conference on autonomous agents and multi-agent systems*, Estoril, Portugal (pp. 935–942). Available at http://eprints.ecs.soton.ac.uk/15131. - Felsenthal, D., & Machover, M. (1998).
*The measurement of voting power—theory and practice, problems and paradoxes*. Cheltenham: Edward Elgar. Google Scholar - Freixas, J., & Kurz, S. (2011).
*On minimal integer representations of weighted games*. Mimeo. Available at http://arxiv.org/abs/1103.0868. - Freixas, J., & Molinero, X. (2009). On the existence of a minimum integer representation for weighted voting systems.
*Annals of Operations Research*,*166*, 243–260. CrossRefGoogle Scholar - Freixas, J., & Molinero, X. (2010). Weighted games without a unique minimal representation in integers.
*Optimization Methods & Software*,*25*(2), 203–215. CrossRefGoogle Scholar - Grilli di Cortona, P., Manzi, C., Pennisi, A., Ricca, F., & Simeone, B. (1999).
*SIAM monographs on discrete mathematics and applications*.*Evaluation and optimization of electoral systems*. Philadelphia: SIAM. CrossRefGoogle Scholar - Isbell, J. R. (1956). A class of majority games.
*Quarterly Journal of Mathematics*,*7*(1), 183–187. CrossRefGoogle Scholar - Kaniovski, S. (2008). The exact bias of the Banzhaf measure of power when votes are neither equiprobable nor independent.
*Social Choice and Welfare*,*31*(2), 281–300. CrossRefGoogle Scholar - Keijzer, B. d. (2009).
*On the design and synthesis of voting games*. Master’s thesis, Delft University of Technology. Google Scholar - Keijzer, B. d., Klos, T., & Zhang, Y. (2010). Enumeration and exact design of weighted voting games. In
*Proceedings of the 9th international conference on autonomous agents and multiagent systems*(Vol. 1, pp. 391–398). Google Scholar - Kirsch, W., Słomczyński, W., & Życzkowski, K. (2007). Getting the votes right.
*European Voice*, (3–9 May), 12. Google Scholar - Kurth, M. (2008).
*Square root voting in the Council of the European Union: rounding effects and the Jagiellonian compromise*. Available at http://arxiv.org/abs/0712.2699. - Kurz, S. (2012a). On minimum sum representations for weighted voting games.
*Annals of Operations Research*,*196(1)*, 361–369. CrossRefGoogle Scholar - Kurz, S. (2012b). On the inverse power index problem.
*Optimization*,*61*(8), 989–1011. CrossRefGoogle Scholar - Kurz, S., Maaser, N., & Napel, S. (2012).
*On the egalitarian weights of nations*. Mimeo, University of Bayreuth. Google Scholar - Laruelle, A., & Valenciano, F. (2008).
*Voting and collective decision-making*. Cambridge: Cambridge University Press. CrossRefGoogle Scholar - Laruelle, A., & Widgrén, M. (1998). Is the allocation of power among EU states fair?
*Public Choice*,*94*(3–4), 317–340. CrossRefGoogle Scholar - Leech, D. (2002a). Designing the voting system for the EU Council of Ministers.
*Public Choice*,*113*(3–4), 437–464. CrossRefGoogle Scholar - Leech, D. (2002b). Voting power in the governance of the international monetary fund.
*Annals of Operations Research*,*109*(1), 375–397. CrossRefGoogle Scholar - Leech, D. (2003). Power indices as an aid to institutional design: the generalised apportionment problem. In M. J. Holler, H. Kliemt, D. Schmidtchen, & M. E. Streit (Eds.),
*Jahrbuch für Neue Politische Ökonomie*(Vol. 22). Tübingen: Mohr Siebeck. Google Scholar - Lindner, I., & Machover, M. (2004). L.S. Penrose’s limit theorem: proof of some special cases.
*Mathematical Social Sciences*,*47*(1), 37–49. CrossRefGoogle Scholar - Lindner, I., & Owen, G. (2007). Cases where the Penrose limit theorem does not hold.
*Mathematical Social Sciences*,*53*(3), 232–238. CrossRefGoogle Scholar - Lucas, W. F. (1992).
*HistoMAP module: Vol.**19*.*Fair voting: weighted votes for unequal constituencies*. Lexington: COMAP. Google Scholar - Neyman, A. (1982). Renewal theory without replacements.
*Annals of Probability*,*10*(2), 464–481. CrossRefGoogle Scholar - Nurmi, H. (1982). The problem of the right distribution of voting power. In M. J. Holler (Ed.),
*Power, voting, and voting power*. Würzburg: Physica-Verlag. Google Scholar - Pennisi, A., Ricca, F., Serafini, P., & Simeone, B. (2007). Amending and enhancing electoral laws through mixed integer programming in the case of Italy. In E. Yashin (Ed.),
*Proceedings of the 8th international conference on economic modernization and social development*. Moscow: HSE. Google Scholar - Penrose, L. S. (1946). The elementary statistics of majority voting.
*Journal of the Royal Statistical Society*,*109*(1), 53–57. CrossRefGoogle Scholar - Penrose, L. S. (1952).
*On the objective study of crowd behaviour*. London: Lewis Google Scholar - Ricca, F., Scozzari, A., Serafini, P., & Simeone, B. (2012). Error minimization methods in biproportional apportionment.
*Top*,*20*(3), 547–577. CrossRefGoogle Scholar - Shapley, L. S., & Shubik, M. (1954). A method for evaluating the distribution of power in a committee system.
*The American Political Science Review*,*48*(3), 787–792. CrossRefGoogle Scholar - Słomczyński, W., & Życzkowski, K. (2006). Penrose voting system and optimal quota.
*Acta Physica Polonica B*,*37*, 3133–3143. Google Scholar - Słomczyński, W., & Życzkowski, K. (2007). From a toy model to the double square root system.
*Homo Oeconomicus*,*24*(3/4), 381–399. Google Scholar - Słomczyński, W., & Życzkowski, K. (2011).
*Square root voting system, optimal threshold and**π*. Available at http://arxiv.org/abs/1104.5213. - Taylor, A. D., & Zwicker, W. S. (1999).
*Simple games*. Princeton: Princeton University Press. Google Scholar