Annals of Operations Research

, Volume 222, Issue 1, pp 213–226 | Cite as

Reformulation of a model for hierarchical divisive graph modularity maximization

  • Sonia Cafieri
  • Alberto Costa
  • Pierre Hansen


Finding clusters, or communities, in a graph, or network is a very important problem which arises in many domains. Several models were proposed for its solution. One of the most studied and exploited is the maximization of the so called modularity, which represents the sum over all communities of the fraction of edges within these communities minus the expected fraction of such edges in a random graph with the same distribution of degrees. As this problem is NP-hard, a few non-polynomial algorithms and a large number of heuristics were proposed in order to find respectively optimal or high modularity partitions for a given graph. We focus on one of these heuristics, namely a divisive hierarchical method, which works by recursively splitting a cluster into two new clusters in an optimal way. This splitting step is performed by solving a convex quadratic program. We propose a compact reformulation of such model, using change of variables, expansion of integers in powers of two and symmetry breaking constraints. The resolution time is reduced by a factor up to 10 with respect to the one obtained with the original formulation.


Clustering Compact reformulation Divisive hierarchical heuristic Modularity maximization 



The authors would like to thank the anonymous referees for their precious comments and suggestions. Financial support by Grants Digiteo 2009-14D “RMNCCO” and Digiteo 2009-55D “ARM” is gratefully acknowledged. P.H. was partially supported by fqrnt (Fonds de recherche du Québec—Nature et technologies) team grant PR-131365.


  1. Adams, W. P., & Dearing, P. M. (1994). On the equivalence between roof duality and Lagrangian duality for unconstrained 0–1 quadratic programming problems. Discrete Applied Mathematics, 48(1), 1–20. CrossRefGoogle Scholar
  2. Adomavicius, G., & Tuzhilin, A. (2005). Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Transactions on Knowledge and Data Engineering, 17(6), 734–749. CrossRefGoogle Scholar
  3. Agarwal, G., & Kempe, D. (2008). Modularity-maximizing graph communities via mathematical programming. The European Physical Journal B, Condensed Matter and Complex Systems, 66(3), 409–418. CrossRefGoogle Scholar
  4. Aloise, D., Cafieri, S., Caporossi, G., Hansen, P., Perron, S., & Liberti, L. (2010). Column generation algorithms for exact modularity maximization in networks. Physical Review E, 82(4), 046112. CrossRefGoogle Scholar
  5. Arenas, A., Fernández, F., & Gómez, S. (2008). Analysis of the structure of complex networks at different resolution levels. New Journal of Physics, 10(5), 053039. CrossRefGoogle Scholar
  6. Batagelj, V., & Mrvar, A. (2006). Pajek datasets.
  7. Boulle, M. (2004). Compact mathematical formulation for graph partitioning. Optimization and Engineering, 5(3), 315–333. CrossRefGoogle Scholar
  8. Brandes, U., Delling, D., Gaertler, M., Görke, R., Hoefer, M., Nikoloski, Z., & Wagner, D. (2008). On modularity clustering. IEEE Transactions on Knowledge and Data Engineering, 20(2), 172–188. CrossRefGoogle Scholar
  9. Brown, G. G., & Dell, R. F. (2007). Formulating integer linear programs: a rogues’ gallery. INFORMS Transactions on Education, 7(2), 1–13. CrossRefGoogle Scholar
  10. Cafieri, S., Hansen, P., & Liberti, L. (2010). Loops and multiple edges in modularity maximization of networks. Physical Review E, 81(4), 046102. CrossRefGoogle Scholar
  11. Cafieri, S., Hansen, P., & Liberti, L. (2011). Locally optimal heuristic for modularity maximization of networks. Physical Review E, 83(5), 056105. CrossRefGoogle Scholar
  12. Clauset, A., Newman, M. E. J., & Moore, C. (2004). Finding community structure in very large networks. Physical Review E, 70(6), 066111. CrossRefGoogle Scholar
  13. Dartnell, L., Simeonidis, E., Hubank, M., Tsoka, S., Bogle, I. D. L., & Papageorgiou, L. G. (2005). Robustness of the p53 network and biological hackers. FEBS Letters, 579(14), 3037–3042. CrossRefGoogle Scholar
  14. Fan, N., & Pardalos, P. M. (2010). Linear and quadratic programming approaches for the general graph partitioning problem. Journal of Global Optimization, 48(1), 57–71. CrossRefGoogle Scholar
  15. Flake, G. W., Lawrence, S., Lee Giles, C., & Coetzee, F. M. (2002). Self-organization and identification of web communities. IEEE Computer, 35(3), 66–71. CrossRefGoogle Scholar
  16. Fortet, R. (1960). Applications de l’algèbre de Boole en recherche opérationelle. Revue Française de Recherche Opérationelle, 4, 17–26. Google Scholar
  17. Fortunato, S. (2010). Community detection in graphs. Physics Reports, 486(3–5), 75–174. CrossRefGoogle Scholar
  18. Fortunato, S., & Barthélemy, M. (2007). Resolution limit in community detection. Proceedings of the National Academy of Sciences of the United States of America, 104(1), 36–41. CrossRefGoogle Scholar
  19. Girvan, M., & Newman, M. E. J. (2002). Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America, 99(12), 7821–7826. CrossRefGoogle Scholar
  20. Good, B. H., de Montjoye, Y.-A., & Clauset, A. (2010). Performance of modularity maximization in practical contexts. Physical Review E, 81(4), 046106. CrossRefGoogle Scholar
  21. Grötschel, M., & Wakabayashi, Y. (1989). A cutting plane algorithm for a clustering problem. Mathematical Programming, 45(1), 59–96. CrossRefGoogle Scholar
  22. Guimerà, R., & Amaral, L. A. N. (2004). Functional cartography of complex metabolic networks. Nature, 433, 895–900. CrossRefGoogle Scholar
  23. Hugo, V. (1951). Bibliothèque de la Pleiade. Les Misérables. Paris: Gallimard. Google Scholar
  24. IBM (2010). ILOG CPLEX 12.2 user’s manual. IBM. Google Scholar
  25. Knuth, D. E. (1993). The Stanford GraphBase: a platform for combinatorial computing. Reading: Addison-Wesley. Google Scholar
  26. Krebs, V. (2008).
  27. Kumpula, J. M., Saramäki, J., Kaski, K., & Kertész, J. (2007). Limited resolution and multiresolution methods in complex network community detection. Fluctuations and Noise Letters, 7(3), 209–214. CrossRefGoogle Scholar
  28. Lusseau, D., Schneider, K., Boisseau, O. J., Haase, P., Slooten, E., & Dawson, S. M. (2003). The bottlenose dolphin community of doubtful sound features a large proportion of long-lasting associations. Behavioral Ecology and Sociobiology, 54(4), 396–405. CrossRefGoogle Scholar
  29. Milo, R., Itzkovitz, S., Kashtan, N., Levitt, R., Shen-Orr, S., Ayzenshtat, I., Sheffer, M., & Alon, U. (2004). Superfamilies of evolved and designed networks. Science, 303, 1538–1542. CrossRefGoogle Scholar
  30. Newman, M. E. J. (2006a). Finding community structure in networks using the eigenvectors of matrices. Physical Review E, 74(3), 036104. CrossRefGoogle Scholar
  31. Newman, M. E. J. (2006b). Modularity and community structure in networks. Proceedings of the National Academy of Sciences of the United States of America, 103(23), 8577–8582. CrossRefGoogle Scholar
  32. Newman, M. E. J. (2010). Networks: an introduction. London: Oxford University Press. CrossRefGoogle Scholar
  33. Newman, M. E. J., & Girvan, M. (2004). Finding and evaluating community structure in networks. Physical Review E, 69(2), 026113. CrossRefGoogle Scholar
  34. Palla, G., Derényi, I., Farkas, I., & Vicsek, T. (2005). Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435, 814–818. CrossRefGoogle Scholar
  35. Radicchi, F., Castellano, C., Cecconi, F., Loreto, V., & Parisi, D. (2004). Defining and identifying communities in networks. Proceedings of the National Academy of Sciences of the United States of America, 101(9), 2658–2663. CrossRefGoogle Scholar
  36. Reichardt, J., & Bornholdt, S. (2006). Statistical mechanics of community detection. Physical Review E, 74(1), 016110. CrossRefGoogle Scholar
  37. Sales-Pardo, M., Guimerà, R., Moreira, A., & Amaral, L. A. N. (2007). Extracting the hierarchical organization of complex systems. Proceedings of the National Academy of Sciences of the United States of America, 104(39), 15224–15229. CrossRefGoogle Scholar
  38. Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393, 440–442. CrossRefGoogle Scholar
  39. Xu, G., Tsoka, S., & Papageorgiou, L. G. (2007). Finding community structures in complex networks using mixed integer optimisation. The European Physical Journal B, Condensed Matter and Complex Systems, 60(2), 231–239. CrossRefGoogle Scholar
  40. Zachary, W. W. (1977). An information flow model for conflict and fission in small groups. Journal of Anthropological Research, 33(4), 452–473. Google Scholar

Copyright information

© Springer Science+Business Media New York 2012

Authors and Affiliations

  1. 1.Laboratoire MAIAAÉcole Nationale de l’Aviation CivileToulouseFrance
  2. 2.LIXÉcole PolytechniquePalaiseauFrance
  3. 3.GERADHECMontréalCanada

Personalised recommendations