Annals of Operations Research

, Volume 225, Issue 1, pp 27–44 | Cite as

Harsanyi power solutions for games on union stable systems

Article

Abstract

This paper analyzes Harsanyi power solutions for cooperative games in which partial cooperation is based on union stable systems. These structures contain as particular cases the widely studied communication graph games and permission structures, among others. In this context, we provide axiomatic characterizations of the Harsanyi power solutions which distribute the Harsanyi dividends proportional to weights determined by a power measure for union stable systems. Moreover, the well-known Myerson value is exactly the Harsanyi power solution for the equal power measure, and on a special subclass of union stable systems the position value coincides with the Harsanyi power solution obtained for the influence power measure.

Keywords

Cooperative TU-game Union stable system Harsanyi dividend Power measure Harsanyi power solution Myerson value Position value 

References

  1. Algaba, E., Bilbao, J. M., Borm, P., & López, J. J. (2000). The position value for union stable systems. Mathematical Methods of Operational Research, 52, 221–236. CrossRefGoogle Scholar
  2. Algaba, E., Bilbao, J. M., Borm, P., & López, J. J. (2001). The Myerson value for union stable structures. Mathematical Methods of Operational Research, 54, 359–371. CrossRefGoogle Scholar
  3. Algaba, E., Bilbao, J. M., van den Brink, R., & Jiménez-Losada, A. (2004a). Cooperative games on antimatroids. Discrete Mathematics, 282, 1–15. CrossRefGoogle Scholar
  4. Algaba, E., Bilbao, J. M., & López, J. J. (2004b). The position value in communication structures. Mathematical Methods of Operational Research, 59, 465–477. Google Scholar
  5. Algaba, E., Bilbao, J. M., van den Brink, R., & López, J. J. (2012). The Myerson value and superfluous supports in union stable systems. Forthcoming in Journal of Optimization Theory and Applications. doi:10.1007/s10957-012-0077-7.
  6. Bilbao, J. M. (2003). Cooperative games on augmenting systems. SIAM Journal on Discrete Mathematics, 17, 122–133. CrossRefGoogle Scholar
  7. Borm, P., Owen, G., & Tijs, S. H. (1992). On the position value for communication situations. SIAM Journal on Discrete Mathematics, 5, 305–320. CrossRefGoogle Scholar
  8. van den Brink, R. (1997). An axiomatization of the disjunctive permission value for games with a permission structure. International Journal of Game Theory, 26, 27–43. CrossRefGoogle Scholar
  9. van den Brink, R. (2011). On hierarchies and communication. Forthcoming in Social Choice and Welfare. doi:10.1007/s00355-011-0557-y.
  10. van den Brink, R., van der Laan, G., & Pruzhansky, V. (2011a). Harsanyi power solutions for graph-restricted games. International Journal of Game Theory, 40, 87–110. CrossRefGoogle Scholar
  11. van den Brink, R., Katsev, I., & van der Laan, G. (2011b). Axiomatizations of two types of Shapley values for games on union closed systems. Economic Theory, 47, 175–188. CrossRefGoogle Scholar
  12. Conyon, M. J., & Muldoon, M. R. (2006). The small world of corporate boards. Journal of Business Finance & Accounting, 33, 1321–1343. CrossRefGoogle Scholar
  13. Derks, J., Haller, H., & Peters, H. (2000). The selectope for cooperative TU-games. International Journal of Game Theory, 29, 23–38. CrossRefGoogle Scholar
  14. Derks, J., van der Laan, G., & Vasil’ev, V. A. (2010). On the Harsanyi payoff vectors and Harsanyi imputations. Theory and Decision, 68, 301–310. CrossRefGoogle Scholar
  15. Gilles, R. P., Owen, G., & van den Brink, R. (1992). Games with permission structures: the conjunctive approach. International Journal of Game Theory, 20, 277–293. CrossRefGoogle Scholar
  16. Faigle, U., & Kern, W. (1992). The Shapley value for cooperative games under precedence constraints. International Journal of Game Theory, 21, 249–266. CrossRefGoogle Scholar
  17. Faigle, U., Grabish, M., & Heyne, M. (2010). Monge extensions of cooperation and communication structures. European Journal of Operational Research, 206, 104–110. CrossRefGoogle Scholar
  18. Harsanyi, J. C. (1959). A bargaining model for cooperative n-person games. In A. W. Tucker & R. D. Luce (Eds.), Contributions to the theory of games (Vol. IV, pp. 325–355). Princeton: Princeton University Press. Google Scholar
  19. Meessen, R. (1988). Communication games. Master’s thesis, Dept of Mathematics, University of Nijmegen, The Netherlands (in Dutch). Google Scholar
  20. Mizruchi, M. S., & Bunting, D. (1981). Influence in corporate networks: an examination of four measures. Administrative Science Quarterly, 26, 475–489. CrossRefGoogle Scholar
  21. Myerson, R. B. (1977). Graphs and cooperation in games. Mathematics of Operations Research, 2, 225–229. CrossRefGoogle Scholar
  22. Myerson, R. B. (1980). Conference structures and fair allocation rules. International Journal of Game Theory, 9, 169–182. CrossRefGoogle Scholar
  23. van den Nouweland, N. A. (1993). Games and graphs in economics situations. PhD dissertation, Tilburg University, The Netherlands. Google Scholar
  24. van den Nouweland, A., Borm, P., & Tijs, S. H. (1992). Allocation rules for hypergraph communication situations. International Journal of Game Theory, 20, 255–268. CrossRefGoogle Scholar
  25. Owen, G. (1986). Values of graph-restricted games. SIAM Journal on Algebraic and Discrete Methods, 7, 210–220. CrossRefGoogle Scholar
  26. Potters, J. A. M., & Reijnierse, H. (1995). Γ-Component additive games. International Journal of Game Theory, 24, 49–56. CrossRefGoogle Scholar
  27. Shapley, L. S. (1953). A value for n-person games. In H. W. Kuhn & A. W. Tucker (Eds.), Contributions to the theory of games (Vol. II, pp. 307–317). Princeton: Princeton University Press. Google Scholar
  28. Vasil’ev, V. A. (1982). Support function on the core of a convex game. Optimizacija, 21, 30–35 (in Russian). Google Scholar
  29. Vasil’ev, V. A. (2003). Extreme points of the Weber polytope. Discretnyi Analiz i Issledovaniye Operatsyi, Series 1, 10, 17–55 (in Russian). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Matemática Aplicada II and Instituto de Matemáticas de la Universidad de Sevilla (IMUS)Escuela Superior de IngenierosSevillaSpain
  2. 2.Department of Econometrics and Tinbergen InstituteVU UniversityAmsterdamThe Netherlands

Personalised recommendations