Annals of Operations Research

, Volume 196, Issue 1, pp 611–634 | Cite as

Multi-neighborhood tabu search for the maximum weight clique problem

Article

Abstract

Given an undirected graph G=(V,E) with vertex set V={1,…,n} and edge set EV×V. Let w:VZ+ be a weighting function that assigns to each vertex iV a positive integer. The maximum weight clique problem (MWCP) is to determine a clique of maximum weight. This paper introduces a tabu search heuristic whose key features include a combined neighborhood and a dedicated tabu mechanism using a randomized restart strategy for diversification. The proposed algorithm is evaluated on a total of 136 benchmark instances from different sources (DIMACS, BHOSLIB and set packing). Computational results disclose that our new tabu search algorithm outperforms the leading algorithm for the maximum weight clique problem, and in addition rivals the performance of the best methods for the unweighted version of the problem without being specialized to exploit this problem class.

Keywords

Multi-neighborhood search Maximum weight clique Maximum clique Tabu search Heuristics 

References

  1. Alidaee, B., Kochenberger, G. A., Lewis, K., Lewis, M., & Wang, H. (2008). A new approach for modelling and solving set packing problems. European Journal of Operational Research, 86(2), 504–512. CrossRefGoogle Scholar
  2. Babel, L. (1994). A fast algorithm for the maximum weight clique problem. Computing, 52, 31–38. CrossRefGoogle Scholar
  3. Ballard, D., & Brown, C. (1982). Computer vision. Englewood Cliffs: Prentice-Hall. Google Scholar
  4. Battiti, R., & Mascia, F. (2010). Reactive and dynamic local search for the Max-Clique problem: engineering effective building blocks. Computers & Operations Research, 37, 534–542. CrossRefGoogle Scholar
  5. Battiti, R., & Protasi, M. (2001). Reactive local search for the maximum clique problem. Algorithmica, 29(4), 610–637. CrossRefGoogle Scholar
  6. Bomze, I. M., Pelillo, M., & Stix, V. (2000). Approximating the maximum weight clique using replicator dynamics. IEEE Transactions on Neural Networks, 11, 1228–1241. CrossRefGoogle Scholar
  7. Busygin, S. (2006). A new trust region technique for the maximum weight clique problem. Discrete Applied Mathematics, 154, 2080–2096. CrossRefGoogle Scholar
  8. Cai, S., Su, K., & Chen, Q. (2011). Local search with edge weighting and configuration checking heuristics for minimum vertex cover. Artificial Intelligence, 175(9–10), 1672–1696. CrossRefGoogle Scholar
  9. Delorme, X., Gandibleux, X., & Rodriguez, J. (2004). GRASP for set packing problems. European Journal of Operational Research, 153, 564–580. CrossRefGoogle Scholar
  10. Di Gaspero, L., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1), 65–89. CrossRefGoogle Scholar
  11. Friden, C., Hertz, A., & de Werra, D. (1989). Stabulus: a technique for finding stable sets in large graphs with tabu search. Computing, 42, 35–44. CrossRefGoogle Scholar
  12. Gendreau, M., Soriano, P., & Salvail, L. (1993). Solving the maximum clique problem using a tabu search approach. Annals of Operations Research, 41, 385–403. CrossRefGoogle Scholar
  13. Glover, F., & Laguna, M. (1997). Tabu search. Boston: Kluwer Academic. CrossRefGoogle Scholar
  14. Grosso, A., Locatelli, M., & Croce, F. D. (2004). Combining swaps and node weights in an adaptive greedy approach for the maximum clique problem. Journal of Heuristics, 10, 135–152. CrossRefGoogle Scholar
  15. Johnson, D. S., & Trick, M. A. (Eds.) (1996). Cliques, coloring, and satisfiability: second DIMACS Implementation Challenge. DIMACS series in discrete mathematics and theoretical computer science (Vol. 26). Providence: AMS. Google Scholar
  16. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum Press. CrossRefGoogle Scholar
  17. Katayama, K., Hamamoto, A., & Narihisa, H. (2005). An effective local search for the maximum clique problem. Information Processing Letters, 95, 503–511. CrossRefGoogle Scholar
  18. Kwon, R. H. (2005). Data dependent worst case bounds for weighted set packing. European Journal of Operational Research, 167(1), 68–76. CrossRefGoogle Scholar
  19. Lü, Z., Hao, J. K., & Glover, F. (2011). Neighborhood analysis: a case study on curriculum-based course timetabling. Journal of Heuristics, 17(2), 97–118. CrossRefGoogle Scholar
  20. Mannino, C., & Stefanutti, E. (1999). An augmentation algorithm for the maximum weighted stable set problem. Computational Optimization and Applications, 14, 367–381. CrossRefGoogle Scholar
  21. Östergård, P. R. J. (2001). A new algorithm for the maximum weight clique problem. Nordic Journal of Computing, 8, 424–436. Google Scholar
  22. Pullan, W. (2008). Approximating the maximum vertex/edge weighted clique using local search. Journal of Heuristics, 14(2), 117–134. CrossRefGoogle Scholar
  23. Pullan, W., & Hoos, H. H. (2006). Dynamic local search for the maximum clique problem. The Journal of Artificial Intelligence Research, 25, 159–185. Google Scholar
  24. Wu, Q., & Hao, J. K. (2012). An adaptive multistart tabu search approach to solve the maximum clique problem. Journal of Combinatorial Optimization. doi:10.1007/s10878-011-9437-8. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.LERIAUniversité d’AngersAngers Cedex 01France
  2. 2.OptTek Systems, Inc.BoulderUSA

Personalised recommendations