Annals of Operations Research

, Volume 196, Issue 1, pp 53–71

A tree search algorithm for solving the multi-dimensional strip packing problem with guillotine cutting constraint

Article

Abstract

The article presents a tree search algorithm (TRSA) for the strip packing problem in two and three dimensions with guillotine cutting constraint. In the 3D-SPP a set of rectangular items (boxes) and a container with fixed width and height but variable length are given. An arrangement of all boxes within the container has to be determined so that the required length is minimised. The 2D-SPP is analogously defined. The proposed TRSA is based on a tree search algorithm for the container loading problem by Fanslau and Bortfeldt (INFORMS J. Comput. 22:222–235, 2010). The TRSA generates guillotine packing patterns throughout. In a comparison with all recently proposed 3D-SPP methods the TRSA performs very competitive. Fine results are also achieved for the 2D-SPP.

Keywords

Strip packing Open dimension problem Guillotine cutting Tree search 

References

  1. Allen, S. D., Burke, E. K., & Kendall, G. (2011). A hybrid placement strategy for the three-dimensional strip packing problem. European Journal of Operational Research, 209, 219–227. CrossRefGoogle Scholar
  2. Alvarez-Valdes, R., Parreno, F., & Tamarit, J. M. (2008). Reactive GRASP for the strip-packing problem. Computers and Operations Research, 35, 1065–1083. CrossRefGoogle Scholar
  3. Baker, B. S., Coffmann, E. G., & Rivest, R. L. (1980). Orthogonal packings in two dimensions. SIAM Journal on Computing, 9, 846–855. CrossRefGoogle Scholar
  4. Bekrar, A., & Kacem, I. (2009). An exact method for the 2D guillotine strip packing problem. Advances in Operations Research, 2009, 732010. CrossRefGoogle Scholar
  5. Bekrar, A., Kacem, I., & Chu, C. (2007). A comparative study of exact algorithms for the two dimensional strip packing problem. Journal of Industrial and Systems Engineering, 1, 151–170. Google Scholar
  6. Belov, G., Scheithauer, G., & Mukhacheva, E. A. (2008). One-dimensional heuristics adapted for two-dimensional rectangular strip packing. The Journal of the Operational Research Society, 59, 823–832. CrossRefGoogle Scholar
  7. Berkey, J. O., & Wang, P. Y. (1987). Two dimensional finite bin packing algorithms. The Journal of the Operational Research Society, 38, 423–429. Google Scholar
  8. Bischoff, E. E., & Mariott, M. D. (1990). A comparative evaluation of heuristics for container loading. European Journal of Operational Research, 44, 267–276. CrossRefGoogle Scholar
  9. Bischoff, E. E., & Ratcliff, M. S. W. (1995). Issues in the development of approaches to container loading. Omega, 23, 377–390. CrossRefGoogle Scholar
  10. Bortfeldt, A. (2006). A genetic algorithm for the two-dimensional strip packing problem with rectangular pieces. European Journal of Operational Research, 172, 814–837. CrossRefGoogle Scholar
  11. Bortfeldt, A., & Gehring, H. (1999). Two metaheuristics for strip packing problems. In D. K. Despotis & C. Zopounidis (Eds.), Proceedings of the fifth international conference of the decision sciences institute, Athens 1999 (Vol. 2, pp. 1153–1156). Google Scholar
  12. Bortfeldt, A., & Mack, D. (2007). A heuristic for the three-dimensional strip packing problem. European Journal of Operational Research, 183, 1267–1279. CrossRefGoogle Scholar
  13. Burke, E. K., Kendall, G., & Whitwell, G. (2004). A new placement heuristic for the orthogonal stock-cutting problem. INFORMS Journal on Computing, 52, 655–671. Google Scholar
  14. Burke, E. K., Kendall, G., & Whitwell, G. (2009). A simulated annealing enhancement of the best-fit heuristic for the orthogonal stock cutting problem. INFORMS Journal on Computing, 21, 505–516. CrossRefGoogle Scholar
  15. Cui, Y., Yang, Y., Cheng, X., & Song, P. (2008). A recursive branch-and-bound algorithm for the rectangular guillotine strip packing problem. Computers & Operations Research, 35, 1281–1291. CrossRefGoogle Scholar
  16. Davies, A. P., & Bischoff, E. E. (1998). Weight distribution considerations in container loading (Technical Report). European Business Management School, University of Wales, Swansea, Statistics and OR Group. Google Scholar
  17. Fanslau, T., & Bortfeldt, A. (2010). A tree search algorithm for solving the container loading problem. INFORMS Journal on Computing, 22, 222–235. CrossRefGoogle Scholar
  18. Fekete, S. P., & Schepers, J. (1997). On more-dimensional packing III: Exact algorithms (Technical Report ZPR97-290). Mathematisches Institut, Universität zu Köln. Google Scholar
  19. Fekete, S. P., Schepers, J., & van der Veen, J. C. (2007). An exact algorithm for higherdimensional orthogonal packing. Operations Research, 55, 569–587. CrossRefGoogle Scholar
  20. Hopper, E. (2000). Two-dimensional packing utilising evolutionary algorithms and other meta-heuristic methods. Ph.D. Thesis, University of Wales. Google Scholar
  21. Hopper, E., & Turton, B. C. H. (2000). An empirical investigation of meta-heuristic and heuristic algorithms for a 2D packing problem. European Journal of Operational Research, 128, 34–57. CrossRefGoogle Scholar
  22. Hopper, E., & Turton, B. C. H. (2001). A review of the application of meta-heuristic algorithms to 2D strip packing problems. Artificial Intelligence Review, 16, 257–300. CrossRefGoogle Scholar
  23. Iori, M., Martello, S., & Monaci, M. (2002). Metaheuristic algorithms for the strip packing problem. In P. Pardalos & V. Korotkich (Eds.), Optimization and industry: new frontieres. Norwell: Kluwer Academic. Google Scholar
  24. Karabulut, K., & Inceoglu, M. M. (2004). A hybrid genetic algorithm for packing in 3D with deepest bottom left with fill method. In Lecture notes in computer science (Vol. 3261, pp. 441–450). Berlin: Springer. Google Scholar
  25. Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., & Nagamochi, H. (2009). Exact algorithms for the 2-dimensional strip packing problem with and without rotations. European Journal of Operational Research, 198, 73–83. CrossRefGoogle Scholar
  26. Kröger, B. (1993). Parallele genetische Algorithmen zur Lösung eines zweidimensionalen Bin Packing Problems. Ph.D. Thesis, Fachbereich Mathematik and Informatik, Universität Osnabrück. Google Scholar
  27. Kröger, B. (1995). Guillotine bin packing: A genetic approach. European Journal of Operational Research, 84, 645–661. CrossRefGoogle Scholar
  28. Lesh, N., Marks, J., McMahon, A., & Mitzenmacher, M. (2004). Exhaustive approaches to 2D rectangular perfect packings. Information Processing Letters, 90, 7–14. CrossRefGoogle Scholar
  29. Lesh, N., Marks, J., McMahon, A., & Mitzenmacher, M. (2005). New heuristic and interactive approaches to 2D rectangular strip packing. ACM Journal of Experimental Algorithmics, 10, 1–18. Google Scholar
  30. Lodi, A., Martello, S., & Vigo, D. (1999). Heuristic and metaheuristic approaches for a class of two-dimensional bin packing problems. INFORMS Journal on Computing, 11, 345–357. CrossRefGoogle Scholar
  31. Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin packing problem. Management Science, 44, 388–399. CrossRefGoogle Scholar
  32. Martello, S., Monaci, M., & Vigo, D. (2003). An exact approach to the strip-packing problem. INFORMS Journal on Computing, 15, 310–319. CrossRefGoogle Scholar
  33. Mumford-Valenzuela, C. L., Vick, J., & Wang, P. Y. (2004). Heuristics for large strip packing problems with guillotine patterns: an empirical study. In: Metaheuristics: computer decision-making (pp. 501–522). Norwell: Kluwer Academic. Google Scholar
  34. Ortmann, F. G., Nthabiseng, N., & van Vuuren, J. H. (2010). New and improved level heuristics for the rectangular strip packing and variable-sized bin packing problems. European Journal of Operational Research, 203, 306–315. CrossRefGoogle Scholar
  35. Pisinger, D. (2002). Heuristics for the container loading problem. European Journal of Operational Research, 141, 382–392. CrossRefGoogle Scholar
  36. Riff, M. C., Bonnaire, X., & Neveu, B. (2009). A revision of recent approaches for two dimensional strip-packing problems. Engineering Applications of Artificial Intelligence, 22, 823–827. CrossRefGoogle Scholar
  37. Schnecke, V. (1996). Hybrid genetic algorithms for solving constrained packing and placement problems. Ph.D. Thesis, Fachbereich Mathematik und Informatik, Universität Osnabrück. Google Scholar
  38. Sixt, M. (1996). Dreidimensionale Packprobleme. Lösungsverfahren basierend auf den Metaheuristiken Simulated Annealing und Tabu-Suche. Ph.D. Thesis, Frankfurt am Main, Peter Lang, Europäischer Verlag der Wissenschaften. Google Scholar
  39. Wäscher, G., Haussner, H., & Schumann, H. (2007). An improved typology of cutting and packing problems. European Journal of Operational Research, 183, 1109–1130. CrossRefGoogle Scholar
  40. Wei, L., Zhang, D., & Chen, Q. (2009). A least wasted first heuristic algorithm for the rectangular packing problem. Computers & Operations Research, 36, 1608–1614. CrossRefGoogle Scholar
  41. Zhang, D., Liu, Y., Chen, S., & Xie, X. (2005). A meta-heuristic algorithm for the strip rectangular packing problem. In Lecture notes in computer science, part III (Vol. 3612, pp. 1235–1241). Berlin: Springer. Google Scholar
  42. Zhang, D., Kang, Y., & Deng, A. (2006). A new heuristic recursive algorithm for the strip rectangular packing problem. Computers & Operations Research, 33, 2209–2217. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Department of Information SystemsUniversity in HagenHagenGermany

Personalised recommendations