Advertisement

Annals of Operations Research

, Volume 207, Issue 1, pp 181–200 | Cite as

Strategies in competing subset selection

  • Claudia Marini
  • Gaia Nicosia
  • Andrea Pacifici
  • Ulrich Pferschy
Article

Abstract

We address an optimization problem in which two agents, each with a set of weighted items, compete in order to minimize the total weight of their solution sets. The latter are built according to a sequential procedure consisting in a fixed number of rounds. In every round each agent submits one item that may be included in its solution set. We study two natural rules to decide which item between the two will be included.

We address the problem from a strategic point of view, that is finding the best moves for one agent against the opponent, in two distinct scenarios. We consider preventive or minimax strategies, optimizing the objective of the agent in the worst case, and best-response strategies, where the items submitted by the opponent are known in advance in each round.

Keywords

Multi-agent optimization Combinatorial game theory Combinatorial optimization Minimax strategies Online algorithms 

References

  1. Aggarwal, G., & Hartline, J. D. (2006). Knapsack auctions. In Proceedings of the 17th annual ACM-SIAM symposium on discrete algorithms (pp. 1083–1092). CrossRefGoogle Scholar
  2. Borodin, A., & El-Yaniv, R. (1998). Online computation and competitive analysis. Cambridge: Cambridge University Press. Google Scholar
  3. Brotcorne, L., Hanafi, S., & Mansi, R. (2009). A dynamic programming algorithm for the bilevel knapsack problem. Operations Research Letters, 37, 215–218. CrossRefGoogle Scholar
  4. Cardinal, J., & Hoefer, M. (2010). Non-cooperative facility location and covering games. Theoretical Computer Science, 411, 1855–1876. CrossRefGoogle Scholar
  5. Demaine, E. D. (2001). In Lecture notes in computer science: Vol. 2136. Playing games with algorithms: algorithmic combinatorial game theory (pp. 18–33). Google Scholar
  6. Felici, G., Mecoli, M., Mirchandani, P. B., & Pacifici, A. (2008). Equilibrium in a two-agent assignment problem. International Journal of Operational Research, 6, 4–26. CrossRefGoogle Scholar
  7. Fujimoto, M., & Yamada, T. (2006). An exact algorithm for the knapsack sharing problem with common items. European Journal of Operational Research, 171, 693–707. CrossRefGoogle Scholar
  8. Hifi, M., M’Hallab, H., & Sadfi, S. (2005). An exact algorithm for the knapsack sharing problem. Computers and Operations Research, 32, 1311–1324. CrossRefGoogle Scholar
  9. Kahn, J., Lagarias, J. C., & Witsenhausen, H. S. (1987). Single-suit two-person card play. International Journal of Game Theory, 16, 291–320. CrossRefGoogle Scholar
  10. Katoh, N., Koyanagi, J., Ohnishi, M., & Ibaraki, T. (1992). Optimal strategies for some team games. Discrete Applied Mathematics, 35, 275–291. CrossRefGoogle Scholar
  11. Leung, J. Y.-T., Pinedo, M., & Wan, G. (2010). Competitive two-agent scheduling and its applications. Operations Research, 58, 458–469. CrossRefGoogle Scholar
  12. Marini, C., Nicosia, G., Pacifici, A., & Pferschy, U. (2010). Minimum cost subset selection with two competing agents. Dipartimento di Informatica e Automazione, Università “Roma Tre”, Technical Report RT-DIA-179-2010. Google Scholar
  13. Nicosia, G., Pacifici, A., & Pferschy, U. (2011). Competitive subset selection with two agents. Discrete Applied Mathematics, 159(16), 1865–1877. CrossRefGoogle Scholar
  14. Schlag, K. H., & Sela, A. (1998). You play (an action) only once. Economics Letters, 59, 299–303. CrossRefGoogle Scholar
  15. Wang, Z., Xing, W., & Fang, S.-C. (2010). Two-group knapsack game. Theoretical Computer Science, 411, 1094–1103. CrossRefGoogle Scholar
  16. Wästlund, J. (2005). A solution of two-person single-suit whist. The Electronic Journal of Combinatorics, 12, R43. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  • Claudia Marini
    • 1
  • Gaia Nicosia
    • 1
  • Andrea Pacifici
    • 2
  • Ulrich Pferschy
    • 3
  1. 1.Dipartimento di Informatica e AutomazioneUniversità “Roma Tre”RomeItaly
  2. 2.Dipartimento di Informatica, Sistemi e ProduzioneUniversità “Tor Vergata”RomeItaly
  3. 3.Institut für Statistik und Operations ResearchKarl-Franzens-Universität GrazGrazAustria

Personalised recommendations