Advertisement

Annals of Operations Research

, Volume 210, Issue 1, pp 309–331 | Cite as

Estimating the parameters of a fatigue model using Benders’ decomposition

  • Enrique CastilloEmail author
  • Roberto Mínguez
  • Antonio J. Conejo
  • Beatriz Pérez
  • Oscar Fontenla
Article

Abstract

This paper shows how Benders decomposition can be used for estimating the parameters of a fatigue model. The objective function of such model depends on five parameters of different nature. This makes the parameter estimation problem of the fatigue model suitable for the Benders decomposition, which allows us to use well-behaved and robust parameter estimation methods for the different subproblems. To build the Benders cuts, explicit formulas for the sensitivities (partial derivatives) are obtained. This permits building the classical iterative method, in which upper and lower bounds of the optimal value of the objective function are obtained until convergence. Two alternative objective functions to be optimized are the likelihood and the sum of squares error functions, which relate to the maximum likelihood and the minimum error principles, respectively. The method is illustrated by its application to a real-world problem.

Keywords

Linear optimization Least-squares Maximum likelihood Sensitivity analysis Benders’ decomposition Fatigue 

Notation

A

Constant

M

Constant

B

Threshold value of log-lifetime

B0

Fixed value of the threshold value of log-lifetime

C

Endurance limit (logarithm of Δσ)

C0

Fixed value of the endurance limit (logarithm of Δσ)

E(⋅)

Cumulative distribution function

F(⋅)

Cumulative distribution function

K

Constant

k

Positive constant used to bound B and C

(⋅)

Likelihood function

\({\ell}^{(\nu)}_{\mathrm{up}}\)

Upper bound for

\({\ell}^{(\nu)}_{\mathrm{down}}\)

Lower bound for

m

Number of pieces at a given level for Δσ

N

Lifetime or number of cycles

N

Dimensionless lifetime

Ni

Lifetime of sample item i

N0

Threshold value for lifetime

n

Sample size

P

Probability

pi

Plotting point value (p i =i/(m+1))

q(⋅)

Functional equation

\({Q}^{(\nu)}_{\mathrm{up}}\)

Upper bound for Q

\({Q}^{(\nu)}_{\mathrm{down}}\)

Lower bound for Q

Vi

\(V_{i}=(\log N_{i}-B)(\log\Delta\sigma _{i}-C)=N^{*}_{i}\Delta \sigma^{*}_{i}\)

zP

Objective function value

α

Variable used in the Benders decomposition master problem

β

Weibull shape parameter of the cumulative distribution function in the SN field

Δσ

Stress range or amplitude

Δσ

Dimensionless stress range or amplitude

Δσi

Stress range of sample item i

Δσst

Ultimate strength

Δσ0

Threshold value for stress range

δ

Weibull scale factor

λ

Parameter defining the position of the corresponding zero-percentile hyperbola

μ

Mean

μ

Vector of dual variables associated with inequality constraints

ν

Counter used for Benders’ cuts

σM

Maximum stress

σm

Minimum stress

η

Vector of dual variables associated with equality constraints

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aczél, J. (1966). Mathematics in science and engineering: Vol19. Lectures on functional equations and their applications. New York: Academic Press. Google Scholar
  2. Aczél, J. (1984). On history, applications and theory of functional equations (introduction). In J. Aczél (Ed.), Functional equations: history, applications and theory (pp. 3–12). Dordrecht: Reidel. Chap. 1. CrossRefGoogle Scholar
  3. ASTM (1981). Statistical analysis of fatigue data. American Society for Testing and Materials STP 744, Philadelphia. Google Scholar
  4. Basquin, O. (1910). The exponential law of endurance tests (Technical Report). ASTM, Philadelphia. Google Scholar
  5. Bastenaire, FA (1972). New method for the statistical evaluation of constant stress amplitude fatigue-test results (Technical Report). ASTM, Philadelphia. Google Scholar
  6. Benders, J. F. (1962). Partitioning procedures for solving mixed-variable programming problems. Numerische Mathematik, 4, 238–252. CrossRefGoogle Scholar
  7. Bolotin, V. V. (1998). Mechanics of fatigue. Boca Raton: CRC Press. Google Scholar
  8. Buckingham, E. (1915). The principle of similitude. Nature, 96, 396–397. CrossRefGoogle Scholar
  9. Cai, X., McKinney, D. C., Lasdon, L. S., & Watkins, D. W. (2001). Solving large nonconvex water resources management models using generalized Benders decomposition. Operations Research, 49, 235–245. CrossRefGoogle Scholar
  10. Castillo, E. (1988). Extreme value theory in engineering. San Diego: Academic Press. Google Scholar
  11. Castillo, E., & Fernández-Canteli, A. (2001). A general regression model for lifetime evaluation and prediction. International Journal of Fracture, 107, 117–137. CrossRefGoogle Scholar
  12. Castillo, E., & Galambos, J. (1987). Lifetime regression models based on a functional equation of physical nature. Journal of Applied Probability, 24, 160–169. CrossRefGoogle Scholar
  13. Castillo, E., & Hadi, A. S. (1994). Parameter and quantile estimation for the generalized extreme-value distribution. Environmetrics, 5, 417–432. CrossRefGoogle Scholar
  14. Castillo, E., & Hadi, A. S. (1995). Modeling lifetime data with application to fatigue models. Journal of the American Statistical Association, 90, 1041–1054. CrossRefGoogle Scholar
  15. Castillo, E., & Ruiz Cobo, M. R. (1992). Monographs and textbooks in pure and applied mathematics: Vol. 161. Functional equations and modelling in science and engineering. New York: Marcel Dekker. Google Scholar
  16. Castillo, E., Fernández-Canteli, A., Esslinger, V., & Thürlimann (1985). Statistical models for fatigue analysis of wires, strands and cables. In IABSE proceedings, vol. 82 (pp. 1–140). Google Scholar
  17. Castillo, E., Fernández Canteli, A., & Hadi, A. (1999). On fitting a fatigue model to data. International Journal of Fatigue, 21, 97–106. CrossRefGoogle Scholar
  18. Castillo, E., Conejo, A., Pedregal, P., García, R., & Alguacil, N. (2001). Building and solving mathematical programming models in engineering and science. New York: Wiley. CrossRefGoogle Scholar
  19. Castillo, E., Hadi, A. S., Conejo, A., & Fernández-Canteli, A. (2004). A general method for local sensitivity analysis with application to regression models and other optimization problems. Technometrics, 46(4), 430–445. CrossRefGoogle Scholar
  20. Castillo, E., Hadi, A. S., Balakrishnan, N., & Sarabia, J. M. (2005). Extreme value and related models with applications in engineering and science. New York: Wiley. Google Scholar
  21. Castillo, E., Conejo, A. J., Mínguez, R., & Ortigosa, D. (2006a). Perturbation approach to sensitivity analysis in nonlinear programming. Journal of Optimization Theory and Applications, 128(1), 49–74. CrossRefGoogle Scholar
  22. Castillo, E., Conejo, A. J., Mínguez, R., & Castillo, C. (2006b). A closed formula for local sensitivity analysis in mathematical programming. Engineering Optimization, 38(1), 93–112. CrossRefGoogle Scholar
  23. Castillo, E., Conejo, A. J., Castillo, C., & Mínguez, R. (2007a). Closed formulas in local sensitivity analysis for some classes of linear and non-linear problems. TOP, 15(2), 355–371. CrossRefGoogle Scholar
  24. Castillo, E., Fernández-Canteli, A., Hadi, A. S., & López-Aenlle, M. (2007b). A fatigue model with local sensitivity analysis. Fatigue & Fracture of Engineering Materials & Structures, 30(2), 149–168. CrossRefGoogle Scholar
  25. Chernick, M. R. (1999). Wiley series in probability and statistics. Bootstrap methods. New York: Wiley. Google Scholar
  26. Choi, J., & Choi, C. (1992). Sensitivity analysis of multilayer perceptron with differentiable activation functions. IEEE Transactions on Neural Networks, 3(1), 101–107. CrossRefGoogle Scholar
  27. Coleman, B. D. (1958). On the strength of classical fibres bundles. International Journal of Mechanics of Solids, 7, 60–70. CrossRefGoogle Scholar
  28. Coleman, T. F., & Li, Y. (1994). On the convergence of reflective newton methods for large-scale nonlinear minimization subject to bounds. Mathematical Programming, 67(2), 189–224. CrossRefGoogle Scholar
  29. Coleman, T. F., & Li, Y. (1996). An interior, trust region approach for nonlinear minimization subject to bounds. SIAM Journal on Optimization, 6, 418–445. CrossRefGoogle Scholar
  30. Conejo, A., Castillo, E., Mínguez, R., & García-Bertrand, R. (2006). Decomposition techniques in mathematical programming. Engineering and science applications. Berlin: Springer. Google Scholar
  31. Cordeau, J. F., Soumis, F., & Desrosiers, J. (2000). A benders decomposition approach for the locomotive and car assignment problem. Transportation Science, 34, 133–149. CrossRefGoogle Scholar
  32. Cordeau, J. F., Soumis, F., & Desrosiers, J. (2001). Simultaneous assignment of locomotives and cars to passenger trains. Operations Research, 49, 531–548. CrossRefGoogle Scholar
  33. Cordeau, J. F., Pasin, F., & Solomon, M. (2006). An integrated model for logistics network design. Annals of Operation Research, 144(24), 59–82. CrossRefGoogle Scholar
  34. Costa, A. M. (2005). A survey on Benders decomposition applied to fixed-charge network design problems. Computers & Operations Research, 32, 1429–1450. CrossRefGoogle Scholar
  35. Davison, A. C., & Hinkley, D. V. (1997). Cambridge series in statistical and probabilistic mathematics. Bootstrap methods and their applications. Google Scholar
  36. Diaconis, P., & Efron, B. (1983). Computer intensive methods in statistics. Scientific American, 248, 116–130. CrossRefGoogle Scholar
  37. Efron, B. (1979). Bootstrap methods: Another look at the jackknife. Annals of Statistics, 7, 1–26. CrossRefGoogle Scholar
  38. Efron, B., & Tibshirami, R. J. (1993). Introduction to the bootstrap. London: Chapman and Hall-CRC. Google Scholar
  39. Florian, M., Bushell, G., Ferland, J., Guérin, G., & Nastansky, L. (1976). The engine scheduling problem in a railway network. INFOR, 14(2), 121–138. Google Scholar
  40. Galambos, J. (1987). The asymptotic theory of extreme order statistics, 2nd edn. Malabar: Robert E. Krieger. Google Scholar
  41. Geoffrion, AM (1972). Generalized benders decomposition. Journal of Optimization Theory and Applications, 10(4), 237–260. CrossRefGoogle Scholar
  42. Geoffrion, AM, & Graves, G. W. (1974). Multicommodity distribution system-design by benders decomposition. Management Science Series A, Theory, 20(5), 822–844. CrossRefGoogle Scholar
  43. Greenwood, JA, Landwehr, J. M., Matalas, N. C., & Wallis, J. R. (1979). Probability weighted moments: Definition and relation to parameters of several distributions expressible in inverse form. Water Resources Research, 15, 1049–1054. CrossRefGoogle Scholar
  44. Holmen, JO (1979). Fatigue of concrete by constant and variable amplitude loading. PhD thesis, University of Trondheim. Google Scholar
  45. Hosking, J. R. M., Wallis, J. R., & Wood, E. F. (1985). Estimation of the generalized extreme-value distribution by the method of probability-weighted moments. Technometrics, 27, 251–261. CrossRefGoogle Scholar
  46. Jenkinson, A. F. (1969). Statistics of extreme (Technical Report). World Meteorological Office, Geneva. Google Scholar
  47. Kohout, J. (1999). A new function describing fatigue crack growth curves. International Journal of Fatigue, 21, 813–821. CrossRefGoogle Scholar
  48. Lawless, J. F. (1982). Statistical models and methods for lifetime data. New York: Wiley. Google Scholar
  49. Mínguez, R., Milano, F., Zárate-Miñano, R., & Conejo, A. J. (2007). Optimal network placement of SVC devices. IEEE Transactions on Power Systems, 22(4), 1851–1860. CrossRefGoogle Scholar
  50. Palmgren, A. (1924). Die Lebensdauer von Kugellagern. Verein deutscher Ingenieure, 68(14), 339–3413. Google Scholar
  51. Pascual, F. G., & Meeker, W. Q. (1999). Estimating fatigue curves with the random fatigue-limit model. Technometrics, 41, 89–94. CrossRefGoogle Scholar
  52. Prescott, P., & Walden, A. T. (1980). Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Biometrika, 67, 723–724. CrossRefGoogle Scholar
  53. Prescott, P., & Walden, A. T. (1983). Maximum likelihood estimation of the parameters of the generalized extreme-value distribution. Journal of Statistical Computing and Simulation, 16, 241–250. CrossRefGoogle Scholar
  54. Saharidis, G. K., & Ierapetritou, M. G. (2009). Resolution method for mixed integer bievel linear problems based on decomposition technique. Journal of Global Optimization, 44, 29–51. CrossRefGoogle Scholar
  55. Saharidis, G. K. D., & Ierapetritou, M. G. (2010). Improving benders decomposition using maximum feasible subsystem (MFS) cut generation strategy. Computers & Chemical Engineering, 34(8), 1237–1245. CrossRefGoogle Scholar
  56. Saharidis, G. K. D., Michel, M., & Ierapetritou, M. G. (2010). Accelerating benders method using covering cut bundle generation. International Transactions in Operational Research, 17(2), 221–237. CrossRefGoogle Scholar
  57. Smith, R. L. (1985). Maximum likelihood estimation in a class of nonregular cases. Biometrika, 72, 67–90. CrossRefGoogle Scholar
  58. Spindel, J. E., & Haibach, E. (1981). Some considerations in the statistical determination of the shape of S-N curves (Technical Report). Philadelphia. Google Scholar
  59. Strohmeyer, C. E. (1914). The determination of fatigue limits under alternating stress conditions. Proceedings of the Royal Society of London. Series A, 90(620), 411–425. CrossRefGoogle Scholar
  60. Stüssi, F. (1955). Die Theorie der Dauerfestigkeit und die Versuche von August Wöhler. Mitt. TKVSB no. 13. Google Scholar
  61. Weibull, W. (1949). A statistical report of fatigue failure in solids. Transactions no. 27. Stockholm: Royal Institute of Technology of Sweden. Google Scholar
  62. Wöhler, A. (1870). Über die Festigkeits-Versuche mit Eisen und Stahl. Zeitschrift für Bauwesen (20), 73. Google Scholar
  63. Zhao, G. (2001). A log-barrier method with Benders decomposition for solving two-stage stochastic linear programs. Mathematical Programming, 90, 507–536. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Enrique Castillo
    • 1
    • 2
    Email author
  • Roberto Mínguez
    • 3
  • Antonio J. Conejo
    • 4
  • Beatriz Pérez
    • 5
  • Oscar Fontenla
    • 5
  1. 1.Department of Applied Mathematics and Computational SciencesUniversidad de CantabriaSantanderSpain
  2. 2.University of Castilla-La ManchaCiudad RealSpain
  3. 3.Environmental Hydraulics Institute “IH Cantabria”Universidad de CantabriaSantanderSpain
  4. 4.Department of Electrical EngineeringUniversity of Castilla-La ManchaCiudad RealSpain
  5. 5.LIDIAUniversity of A CoruñaA CoruñaSpain

Personalised recommendations