Annals of Operations Research

, Volume 193, Issue 1, pp 273–289 | Cite as

Complete voting systems with two classes of voters: weightedness and counting

Article

Abstract

We investigate voting systems with two classes of voters, for which there is a hierarchy giving each member of the stronger class more influence or important than each member of the weaker class. We deduce for voting systems one important counting fact that allows determining how many of them are for a given number of voters. In fact, the number of these systems follows a Fibonacci sequence with a smooth polynomial variation on the number of voters. On the other hand, we classify by means of some parameters which of these systems are weighted. This result allows us to state an asymptotic conjecture which is opposed to what occurs for symmetric games.

Keywords

Voting systems Simple games Weighted games Complete simple games Fibonacci sequence 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boros, E., Hammer, P. L., Ibaraki, T., & Kawakawi, K. (1991). Identifying 2-monotonic positive boolean functions in polynomial time. In W. L. Hsu & R. C. T. Lee (Eds.), LNCS: Vol. 557. ISA’91 algorithms (pp. 104–115). Berlin: Springer. Google Scholar
  2. Boros, E., Hammer, P. L., Ibaraki, T., & Kawakawi, K. (1997). Polynomial time recognition of 2-monotonic positive functions given by an oracle. SIAM Journal on Computing, 26, 93–109. CrossRefGoogle Scholar
  3. Cameron, P. J. (1994). Combinatorics: topics, techniques, algorithms. Cambridge: Cambridge University Press. Google Scholar
  4. Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155. CrossRefGoogle Scholar
  5. Dunlap, R. A. (1998). The golden ratio and Fibonacci numbers. Singapore: World Scientific. Google Scholar
  6. Freixas, J., & Molinero, X. (2008). On the existence of a minimum integer representation for weighted voting systems. Annals of Operation Research, 166, 243–260. CrossRefGoogle Scholar
  7. Freixas, J., & Molinero, X. (2009). Simple games and weighted games: A theoretical and computational viewpoint. Discrete Applied Mathematics, 157, 1496–1508. CrossRefGoogle Scholar
  8. Freixas, J., & Zwicker, W. S. (2009). Anonymous yes–no voting with abstention and multiple levels of approval. Games and Economic Behavior, 67, 428–444. CrossRefGoogle Scholar
  9. Hu, S. T. (1965). Threshold logic. Berkeley: University of California Press. Google Scholar
  10. Isbell, J. R. (1958). A class of simple games. Duke Mathematical Journal, 25, 423–439. CrossRefGoogle Scholar
  11. Kilgour, D. M. (1983). A formal analysis of the amending formula of Canada’s Constitution Act. Canadian Journal of Political Science, 16, 771–777. CrossRefGoogle Scholar
  12. May, K. (1952). A set of independent, necessary and sufficient conditions for simple majority decision. Econometria, 20, 680–684. CrossRefGoogle Scholar
  13. Taylor, A. D. (1995). Mathematics and politics. New York: Springer. CrossRefGoogle Scholar
  14. Taylor, A. D., & Zwicker, W. S. (1992). A characterization of weighted voting. In Proceedings of the American mathematical society (Vol. 115, pp. 1089–1094). Google Scholar
  15. Taylor, A. D., & Zwicker, W. S. (1999). Simple games: desirability relations, trading, and pseudoweightings. Princeton: Princeton University Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Josep Freixas
    • 1
  • Xavier Molinero
    • 1
  • Salvador Roura
    • 2
  1. 1.Dept. de Matemàtica Aplicada 3Universitat Politècnica de CatalunyaManresaSpain
  2. 2.Dept. de Llenguatges i Sistemes InformàticsUniversitat Politècnica de CatalunyaBarcelonaSpain

Personalised recommendations