Annals of Operations Research

, Volume 219, Issue 1, pp 187–202 | Cite as

Multiobjective evolutionary algorithms to identify highly autocorrelated areas: the case of spatial distribution in financially compromised farms

  • Carlos R. García-AlonsoEmail author
  • Leonor M. Pérez-Naranjo
  • Juan C. Fernández-Caballero


Local Indicators of Spatial Aggregation (LISA) can be used as objectives in a multicriteria framework when highly autocorrelated areas (hot-spots) must be identified and geographically located in complex areas. To do so, a Multi-Objective Evolutionary Algorithm (MOEA) based on SPEA2 (Strength Pareto Evolutionary Algorithm v.2) has been designed to evaluate three different fitness functions (fine-grained strength, the weighted sum of objectives and fuzzy evaluation of weighted objectives) and three LISA methods. MOEA makes it possible to achieve a compromise between spatial econometric methods as it highlights areas where a specific phenomenon shows significantly high autocorrelation. The spatial distribution of financially compromised olive-tree farms in Andalusia (Spain) was selected for analysis and two fuzzy hot-spots were statistically identified and spatially located. Hot-spots can be considered to be spatial fuzzy sets where the spatial units have a membership degree that can also be calculated.


Multiobjective evolutionary algorithms Spatial analysis Local indicators of spatial aggregation Fuzzy hot-spots Financially compromised areas 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Agarwal, D. K., Silander, J. A., Gelfand, A. E., Dewar, R. E., & Mickelson, J. G. (2005). Tropical deforestation in Madagascar: analysis using hierarchical, spatially explicit Bayesian regression models. Ecological Modelling, 185, 105–131. CrossRefGoogle Scholar
  2. Andrienko, N., & Andrienko, G. (2006). Exploratory analysis of spatial and temporal data: a systematic approach. Berlin: Springer. Google Scholar
  3. Anselin, L. (1995). Local indicators of spatial association: LISA. Geographical Analysis, 27(2), 93–115. CrossRefGoogle Scholar
  4. Anselin, L. (2002). Under the hood: issues in the specification and interpretation of spatial regression. Models of Agricultural Economics, 27, 247–267. CrossRefGoogle Scholar
  5. Asai, K. (1995). Fuzzy systems for information processing. Amsterdam: IOS Press. Google Scholar
  6. Assunçao, R., Costa, M., Tavares, A., & Ferreira, S. (2006). Fast detection of arbitrarily shaped disease clusters. Statistics in Medicine, 25, 723–742. CrossRefGoogle Scholar
  7. Bäck, T. (1996). Evolutionary algorithms in theory and practice. New York: Oxford University Press. Google Scholar
  8. Barbosa, H. J., & Barreto, A. M. (2001). An interactive genetic algorithm with co-evolution of weights for multiobjective problems. In L. Spector, E. D. Goodman, A. Wu, W. Langdon, H. M. Voigt, M. Gen, S. Sen, M. Dorigo, S. Pezeshk, M. H. Garzon, & E. Burke (Eds.), Proceedings of the genetic and evolutionary computation conference (GECCO’2001) (pp. 203–210), San Francisco, California. San Mateo: Morgan Kaufmann. Google Scholar
  9. Baddeley, A., Gregori, P., Mateu, J., Stoica, R., & Stoyan, D. (2006). Case studies in spatial point process modeling. Berlin: Springer. CrossRefGoogle Scholar
  10. Beirlant, J., Goegebeur, Y., Segers, J., & Teugels, J. (2004). Statistics of extremes: theory and applications. Chichester: Wiley. CrossRefGoogle Scholar
  11. Coello-Coello, C. A., & Lamont, G. B. (2004). Applications of multi-objective evolutionary algorithms. Singapore: Word Scientific. CrossRefGoogle Scholar
  12. Coello-Coello, C. A., Lamont, G. B., & Van Veldhuizen, D. A. (2007). Evolutionary algorithms for solving multi-objective problems. New York: Springer. Google Scholar
  13. Das, I., & Dennis, J. (1997). A closer look at drawbacks of minimizing weighted sums of objectives for Pareto set generation in multicriteria optimization problems. Structural Optimization, 14(1), 63–69. CrossRefGoogle Scholar
  14. De Pinto, A., & Nelson, G. C. (2007). Modelling deforestation and land-use change: sparse data environments. Journal of Agricultural Economics, 58(3), 502–516. CrossRefGoogle Scholar
  15. Deb, K. (1999). Non-linear goal programming using multi-objective genetic algorithms (Technical Report CI-60/98). Dortmund: Department of Computer Science/LS11, University of Dortmund, Germany. Google Scholar
  16. Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA–II. IEEE Transactions on Evolutionary Computation, 6(2), 182–197. CrossRefGoogle Scholar
  17. Emir-Farinas, H., & Francis, R. L. (2005). Demand point aggregation for planar covering location models. Annals of Operation Research, 136, 175–192. CrossRefGoogle Scholar
  18. Fischer, M. M. (2006). Spatial analysis and geocomputation. Berlin: Springer. Google Scholar
  19. García-Alonso, C. R., & Pérez-Naranjo, L. (2007). Identification of financially compromised areas in the agrarian sector. In 22nd European conference on operational research book of abstracts (Vol. 1, p. 75). Google Scholar
  20. Gonçalves, G. E., & Estellita, L. P. (2002). Integrating geographical information systems and multi-criteria methods: a case study. Annals of Operation Research, 116, 243–269. CrossRefGoogle Scholar
  21. Griffith, D. A. (2003). Using estimated missing spatial data with the 2-median model. Annals of Operation Research, 122, 233–247. CrossRefGoogle Scholar
  22. Gutiérrez, P. A., López-Granados, F., Peña-Barragán, J. M., Jurado-Expósito, M., Gómez-Casero, M. T., & Hervás-Martínez, C. (2008). Mapping sunflower yield as affected by Ridolfia segetum patches and elevation by applying evolutionary product unit neural networks to remote sensed data. Computers and Electronics in Agriculture, 60(2), 122–132. CrossRefGoogle Scholar
  23. Hajela, P., & Lin, C. Y. (1992). Genetic search strategies in multicriterion optimal design. Structural Optimization, 4, 99–107. CrossRefGoogle Scholar
  24. Hodgson, M. J., & Jacobsen, S. K. (2009). A hierarchical location-allocation model with travel based on expected referral distances. Annals of Operation Research, 167, 271–286. CrossRefGoogle Scholar
  25. Hof, J., & Bevers, M. (2000). Direct spatial optimization in natural resource management: four linear programming examples. Annals of Operation Research, 95, 67–81. CrossRefGoogle Scholar
  26. Holloway, G., Lacombe, D., & LeSage, J. P. (2007). Spatial econometric issues for bio-economic and land-use modelling. Journal of Agricultural Economics, 58(3), 549–588. CrossRefGoogle Scholar
  27. Horn, J., Nafpliotis, N., & Goldberg, D. E. (1994). A niched Pareto genetic algorithm for multiobjective optimization. In Proceedings of the first IEEE conference on evolutionary computation, IEEE World congress on computational intelligence (Vol. 1, pp. 82–87). Piscataway: IEEE Service Center. CrossRefGoogle Scholar
  28. Ishbuchi, H., & Murata, T. (1996). Multi-objective local search algorithm and its applications to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 392–403. CrossRefGoogle Scholar
  29. Ishibuchi, H., & Murata, T. (1998). Multi-objective genetic local search algorithm and its application to flowshop scheduling. IEEE Transactions on Systems, Man, and Cybernetics, 28(3), 392–403. CrossRefGoogle Scholar
  30. Junta de Andalucía (2004). Anuario de estadísticas agrarias y pesqueras año 2004. Consejería de Agricultura, Pesca y Alimentación. Accessed 19 November 2007.
  31. Kalyanmoy, D. (2004). Multi-objective optimization using evolutionary algorithms. Chichester: Wiley. Google Scholar
  32. Kursawe, F. (1991). A variant of evolution strategies for vector optimization. In H. P. Schwefel & R. Männer (Eds.), Lecture notes in computer science: Vol. 496. Parallel problem solving from nature. 1st workshop, PPSN I (pp. 193–197), Dortmund, Germany. Berlin: Springer. Google Scholar
  33. Laumanns, M., Thiele, L., & Zitzler, E. (2006). An efficient, adaptive parameter variation scheme for metaheuristics based on the epsilon-constraint method. European Journal of Operational Research, 169, 932–942. CrossRefGoogle Scholar
  34. Lee, M. A., & Esbensen, H. (1997). Fuzzy/multiobjective genetic systems for intelligent systems design tools and components. In W. Pedrycz (Ed.), Fuzzy evolutionary computation. Boston: Kluwer Academic. Google Scholar
  35. Loughlin, D. H., & Ranjithan, S. (1997). The neighborhood constraint method: a genetic algorithm-based multiobjective optimization technique. In T. Bäck (Ed.), Proceedings of the seventh international conference on genetic algorithms (pp. 666–673). San Mateo: Morgan Kaufmann. Google Scholar
  36. Michalewicz, Z., & Schoenauer, M. (1996). Evolutionary algorithms for constrained parameter optimization problems. Evolutionary Computation, 4(1), 1–32. CrossRefGoogle Scholar
  37. Moreno, B., García-Alonso, C. R., Negrín-Hernández, M. A., Torres-González, F., & Salvador-Carulla, L. (2008). Spatial analysis to identify hotspots of prevalence of schizophrenia. Social Psychiatry and Psychiatric Epidemiology. doi: 10.1007//s00127-008-0368-3. Google Scholar
  38. Noyan, N. (2010). Alternate risk measures for emergency medical service system design. Annals of Operation Research. doi: 10.1007/s10479-010-0787-x. Google Scholar
  39. Ord, J. K., & Getis, A. (1995). Local spatial autocorrelation statistics: distributional issues and an application. Geographical Analysis, 27, 286–306. CrossRefGoogle Scholar
  40. Pérez-Naranjo, L. M., & García-Alonso, C. R. (2005). Spatial income distribution of horticultural farms in Andalusia. Cuadernos Geográficos, 37, 41–58. Google Scholar
  41. Silverman, B. W. (1986). Density estimation for statistics and data analysis. London: Chapman and Hall. CrossRefGoogle Scholar
  42. Smith, A. E., & Coit, D. W. (1997). Constrain handling techniques—penalty functions. In T. Bäck, D. B. Fogel, & Z. Michalewicz (Eds.), Handbook of evolutionary computation. London: Oxford University Press. Google Scholar
  43. Srigiriraju, K. C. (2000). Noninferior surface tracing evolutionary algorithm (NSTEA) for multi objective optimization. Master’s thesis, North Carolina State University, Raleigh, North Carolina. Google Scholar
  44. Staal, S. J., Baltenweck, L., Waithaka, M., de Wolff, T., & Njoroge, L. (2002). Location and uptake: integrated household and GIS analysis of technology adoption and land use with application to smallholder dairy farms in Kenya. Agricultural Economics, 27, 295–315. CrossRefGoogle Scholar
  45. Tavares-Pereira, F., Rui Figueira, J., Mousseau, V., & Roy, B. (2007). Multiple criteria districting problems: the public transportation network pricing system of the Paris region. Annals of Operation Research, 154, 69–92. CrossRefGoogle Scholar
  46. Wang, G., & Terpenny, J. P. (2005). Interactive preference incorporation in evolutionary engineering design. In Y. Jin (Ed.), Knowledge incorporation in evolutionary computation. Berlin: Springer. Google Scholar
  47. Wilson, P. B., & MacLeod, M. D. (1993). Low implementation cost IIR digital filter design using genetic algorithms. In IEE/IEEE workshop on natural algorithms in signal processing (pp. 4/1–4/8). Chelmsford, UK. Google Scholar
  48. Wolpert, D. H., & Macready, W. G. (1997). No free lunch theorems for optimization. IEEE Transactions on Evolutionary Computation, 1(1), 67–82. CrossRefGoogle Scholar
  49. Youssef, H. A., Kinsella, A., & Waddington, J. L. (1991). Evidence for geographical variations in the prevalence of schizophrenia in rural Ireland. Archives of General Psychiatry, 48, 254–258. CrossRefGoogle Scholar
  50. Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative case study and strength Pareto approach. IEEE Transactions on Evolutionary Computation, 3(4), 257–271. CrossRefGoogle Scholar
  51. Zitzler, E., Laumanns, M., & Thiele, L. (2001). SPEA2: improving the strength of Pareto evolutionary algorithm. In K. Giannakoglou, D. Tsahalis, J. Periaux, P. Papailou, & T. Fogarty (Eds.), Evolutionary methods for design, optimization and control with applications to industrial problems (EUROGEN 2001), Athens. Google Scholar
  52. Zydallis, J. B., Veldhuizen, D. A. V., & Lamont, G. B. (2001). Statistical comparison of multiobjective evolutionary algorithms including the MOMGA–II. In E. Zitzler, K. Deb, L. Thiele, C. A. C. Coello, & D. Corne (Eds.), Lecture notes in computer science: Vol. 1993. First international conference on evolutionary multi-criterion optimization (pp. 226–240). Berlin: Springer. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Carlos R. García-Alonso
    • 1
    Email author
  • Leonor M. Pérez-Naranjo
    • 2
  • Juan C. Fernández-Caballero
    • 3
  1. 1.ETEA, Business Administration FacultyUniversity of Córdoba (SPAIN)CórdobaSpain
  2. 2.Business Administration DepartmentUniversity Pablo de OlavideSevillaSpain
  3. 3.Computer Science and Numeric Analysis DepartmentUniversity of CórdobaCórdobaSpain

Personalised recommendations