Annals of Operations Research

, Volume 197, Issue 1, pp 47–70 | Cite as

Improving the computational efficiency in a global formulation (GLIDE) for interactive multiobjective optimization



In this paper, we present a new general formulation for multiobjective optimization that can accommodate several interactive methods of different types (regarding various types of preference information required from the decision maker). This formulation provides a comfortable implementation framework for a general interactive system and allows the decision maker to conveniently apply several interactive methods in one solution process. In other words, the decision maker can at each iteration of the solution process choose how to give preference information to direct the interactive solution process, and the formulation enables changing the type of preferences, that is, the method used, whenever desired. The first general formulation, GLIDE, included eight interactive methods utilizing four types of preferences. Here we present an improved version where we pay special attention to the computational efficiency (especially significant for large and complex problems), by eliminating some constraints and parameters of the original formulation. To be more specific, we propose two new formulations, depending on whether the multiobjective optimization problem to be considered is differentiable or not. Some computational tests are reported showing improvements in all cases. The generality of the new improved formulations is supported by the fact that they can accommodate six interactive methods more, that is, a total of fourteen interactive methods, just by adjusting parameter values.


Multiobjective programming Multiple objectives Interactive methods Reference point methods Classification Marginal rates of substitution Global system Pareto optimality 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Benayoun, R., de Montgolfier, J., Tergny, J., & Laritchev, O. (1971). Linear programming with multiple objective functions: Step method (STEM). Mathematical Programming, 1(3), 366–375. CrossRefGoogle Scholar
  2. Buchanan, J. T. (1997). A naïve approach for solving MCDM problems: the GUESS method. Journal of the Operational Research Society, 48, 202–206. Google Scholar
  3. Caballero, R., Luque, M., Molina, J., & Ruiz, F. (2002). PROMOIN: an interactive system for multiobjective programming. International Journal of Information Technology & Decision Making, 1(4), 635–656. CrossRefGoogle Scholar
  4. Chankong, V., & Haimes, Y. Y. (1978). The interactive surrogate worth trade-off (ISWT) method for multiobjective decision-making. In S. Zionts (Ed.), Multiple criteria problem solving (pp. 42–67). Berlin: Springer. CrossRefGoogle Scholar
  5. Chankong, V., & Haimes, Y. Y. (1983). Multiobjective decision making theory and methodology. New York: Elsevier Science. Google Scholar
  6. Chinchuluun, A., & Pardalos, P. M. (2007). A survey of recent developments in multiobjective optimization. Annals of Operations Research, 154(1), 29–50. CrossRefGoogle Scholar
  7. Deb, K., & Miettinen, K. (2010). Nadir point estimation using evolutionary approaches: better accuracy and computational speed through focused search. In M. Ehrgott, B. Naujoks, T. J. Stewart, & J. Wallenius (Eds.), Multiple criteria decision making for sustainable energy and transportation systems (pp. 339–354). Berlin/Heidelberg: Springer. CrossRefGoogle Scholar
  8. Deb, K., Miettinen, K., & Chaudhuri, S. (2010). Towards an estimation of nadir objective vector using a hybrid of evolutionary and local search approaches. IEEE Transactions on Evolutionary Computation, 14(6), 821–841. CrossRefGoogle Scholar
  9. Eschenauer, H. A., Osyczka, A., & Schäfer, E. (1990). Interactive multicriteria optimization in design process. In H. Eschenauer, J. Koski, & A. Osyczka (Eds.), Multicriteria design optimization procedures and applications (pp. 71–114). Berlin: Springer. CrossRefGoogle Scholar
  10. Fletcher, R. (2000). Practical methods of optimization (2nd ed.). New York: Wiley. Google Scholar
  11. Fonseca, C. M., & Fleming, P. J. (1995). An overview of evolutionary algorithms in multi-objective optimization. Evolutionary Computation, 3(1), 1–16. CrossRefGoogle Scholar
  12. Gardiner, L. R., & Steuer, R. E. (1994a). Unified interactive multiple objective programming. European Journal of Operational Research, 74(3), 391–406. CrossRefGoogle Scholar
  13. Gardiner, L. R., & Steuer, R. E. (1994b). Unified interactive multiple objective programming: an open architecture for accommodating new procedures. Journal of the Operational Research Society, 45(12), 1456–1466. Google Scholar
  14. Gass, S., & Saaty, T. (1955). The computational algorithm for the parametric objective function. Naval Research Logistics Quaterly, 2(1–2), 39–45. CrossRefGoogle Scholar
  15. Gill, P. E., Murray, W. W., & Wright, M. H. (1981). Practical optimization. London/New York: Academic Press. Google Scholar
  16. Goldfarb, D., & Idnani, A. (1983). A numerically stable dual method for solving strictly convex quadratic problems. Mathematical Programming, 27, 1–33. CrossRefGoogle Scholar
  17. Grauer, M., Lewandowski, A., & Wierzbicki, A. P. (1984). DIDASS—theory, implementation and experiences. In M. Grauer & A. P. Wierzbicki (Eds.), Interactive decision analysis (pp. 22–30). Berlin: Springer. Google Scholar
  18. Hakanen, J., Kawajiri, Y., Miettinen, K., & Biegler, L. T. (2007). Interactive multi-objective optimization for simulated moving bed processes. Control and Cybernetics, 36(2), 283–302. Google Scholar
  19. Heikkola, E., Miettinen, K., & Nieminen, P. (2006). Multiobjective optimization of an ultrasonic transducer using NIMBUS. Ultrasonics, 44(4), 368–380. CrossRefGoogle Scholar
  20. Hwang, C. L., & Masud, A. S. M. (1979). Multiple objective decision making—methods and applications: a state-of-the-art survey. Berlin: Springer. CrossRefGoogle Scholar
  21. Kaliszewski, I. (2004). Out of the mist—towards decision-maker-friendly multiple criteria decision making support. European Journal of Operational Research, 158(2), 293–307. CrossRefGoogle Scholar
  22. Korhonen, P., & Laakso, J. (1986). A visual interactive method for solving the multiple criteria problem. European Journal of Operational Research, 24(2), 277–287. CrossRefGoogle Scholar
  23. Korhonen, P., & Wallenius, J. (1988). A Pareto race. Naval Research Logistics, 35(6), 615–623. CrossRefGoogle Scholar
  24. Laukkanen, T., Tveit, T.-M., Ojalehto, V., Miettinen, K., & Fogelholm, C.-J. (2010). An interactive multi-objective approach to heat exchanger network synthesis. Computers and Chemical Engineering, 34(6), 943–952. CrossRefGoogle Scholar
  25. Lewandowski, A., Kreglewski, T., Rogowski, T., & Wierzbicki, A. P. (1989). Didass—theory, implementation and experiences. In A. Lewandowski & A. P. Wierzbicki (Eds.), Aspiration based decision support systems: theory, software and applications (pp. 21–47). Berlin: Springer. Google Scholar
  26. Luque, M., Yang, J. B., & Wong, B. Y. H. (2009). PROJECT method for multiobjective optimization based on the gradient projection and reference point. IEEE Transactions on Systems, Man and Cybernetics—Part A: Systems and Humans, 39(4), 864–879. CrossRefGoogle Scholar
  27. Luque, M., Ruiz, F., & Steuer, R. E. (2010). Modified interactive Chebyshev algorithm (MICA) for convex multiobjective programming. European Journal of Operational Research, 204(3), 557–564. CrossRefGoogle Scholar
  28. Luque, M., Ruiz, F., & Miettinen, K. (2011). Global formulation for interactive multiobjective optimization. OR Spectrum, 33(1), 27–48. CrossRefGoogle Scholar
  29. Miettinen, K. (1999). Nonlinear multiobjective optimization. Boston: Kluwer Academic. Google Scholar
  30. Miettinen, K., & Hakanen, J. (2009). Why use interactive multi-objective optimization in chemical process design? In G. P. Rangaiah (Ed.), Multi-objective optimization: techniques and applications in chemical engineering (pp. 153–188). World Scientific: Singapore. Google Scholar
  31. Miettinen, K., & Mäkelä, M. M. (1995). Interactive bundle-based method for nondifferentiable multiobjective optimization: NIMBUS. Optimization, 34(3), 231–246. CrossRefGoogle Scholar
  32. Miettinen, K., & Mäkelä, M. M. (2006). Synchronous approach in interactive multiobjective optimization. European Journal of Operational Research, 170(7–8), 909–922. CrossRefGoogle Scholar
  33. Miettinen, K., Mäkelä, M. M., & Kaario, K. (2006). Experiments with classification-based scalarizing functions in interactive multiobjective optimization. European Journal of Operational Research, 175(2), 931–947. CrossRefGoogle Scholar
  34. Miettinen, K., Ruiz, F., & Wierzbicki, A. (2008). Introduction to multiobjective optimization: interactive approaches. In J. Branke, K. Deb, K. Miettinen, & R. Słowiński (Eds.), Multiobjective optimization: interactive and evolutionary approaches (pp. 27–57). Berlin/Heidelberg: Springer. Google Scholar
  35. NAG (2000). Numerical algorithm group limited: NAG C library manual. Mark 6. Oxford: NAG. Google Scholar
  36. Nakayama, H., & Sawaragi, Y. (1984). Satisficing trade-off method for multiobjective programming. In M. Grauer & A. P. Wierzbicki (Eds.), Interactive decision analysis (pp. 113–122). Berlin: Springer. Google Scholar
  37. Ogryczak, W., & Lahoda, S. (2006). Aspiration/reservation-based decision support—a step beyond goal programming. Journal of Multi-Criteria Decision Analysis, 1(2), 101–117. CrossRefGoogle Scholar
  38. Pinter, J. D. (2001). Computational global optimization in nonlinear systems: an interactive tutorial. Atlanta: Lionheart. Google Scholar
  39. Pinter, J. D. (2006). Nonlinear optimization with MPL/LGO: introduction and user’s guide. Technical report, Maximal Software and PCS. Google Scholar
  40. Romero, C. (1993). Extended lexicographic goal programming: a unified approach. Omega, 29(1), 63–71. CrossRefGoogle Scholar
  41. Ruotsalainen, H., Boman, E., Miettinen, K., & Tervo, J. (2009). Nonlinear interactive multiobjective optimization method for radiotherapy treatment planning with Boltzmann transport equation. Contemporary Engineering. Sciences, 2(9), 391–422. Google Scholar
  42. Sakawa, M. (1982). Interactive multiobjective decision making by the sequential proxy optimization technique: SPOT. European Journal of Operational Research, 9(4), 386–396. CrossRefGoogle Scholar
  43. Sawaragi, Y., Nakayama, H., & Tanino, T. (1985). Theory of multiobjective optimization. Orlando: Academic Press. Google Scholar
  44. Steuer, R. E. (1986). Multiple criteria optimization: theory, computation and application. New York: Wiley. Google Scholar
  45. Steuer, R. E., & Choo, E. U. (1983). An interactive weighted Tchebycheff procedure for multiple objective programming. Mathematical Programming, 26(1), 326–344. CrossRefGoogle Scholar
  46. Vassilev, V., & Narula, S. C. (1993). A reference direction algorithm for solving multiple objective integer linear programming problems. Journal of the Operational Research Society, 44(12), 1201–1209. Google Scholar
  47. Vassilev, V., Narula, S. C., & Gouljashki, V. G. (2001). An interactive reference direction algorithm for solving multi-objective convex nonlinear integer programming problems. International Transactions in Operational Research, 8(4), 367–380. CrossRefGoogle Scholar
  48. Wierzbicki, A. P. (1980). The use of reference objectives in multiobjective optimization. In G. Fandel & T. Gal (Eds.), Multiple criteria decision making, theory and applications (pp. 468–486). Berlin: Springer. CrossRefGoogle Scholar
  49. Wierzbicki, A. P., Makowski, M., & Wessels, J. (Eds.) (2000). Model-based decision support methodology with environmental applications. Dordrecht: Kluwer Academic. Google Scholar
  50. Yang, J. B. (1999). Gradient projection and local region search for multiobjective optimization. European Journal of Operational Research, 112(2), 432–459. CrossRefGoogle Scholar
  51. Zadeh, L. (1963). Optimality and non-scalar-valued performance criteria. IEEE Transactions on Automatic Control, 8(1), 59–60. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  • Francisco Ruiz
    • 1
  • Mariano Luque
    • 1
  • Kaisa Miettinen
    • 2
  1. 1.University of MalagaMalagaSpain
  2. 2.Department of Mathematical Information TechnologyUniversity of JyväskyläUniversity of JyväskyläFinland

Personalised recommendations