Advertisement

Annals of Operations Research

, Volume 181, Issue 1, pp 515–538 | Cite as

Proposal of a new distribution in PERT methodology

  • Catalina Beatriz García García
  • José García Pérez
  • Salvador Cruz Rambaud
Article

Abstract

The aim of this paper is to present the generalized biparabolic distribution (GBP) as a good candidate to be utilized as the distribution underlying to PERT methodology (Malcolm et al. in Oper. Res. 7:646–669, 1959). To do this and following the criteria established by Taha (Investigación de Operaciones, 1981) and Herrerías (Estudios de Economía Aplicada, pp. 89–112, 1989), we will compare the mean and variance estimates derived from each proposed density function, viz beta, two-sided power (TSP) and GBP distributions. Also we will compare the estimates contributed by the mesokurtic and of constant variance families of the aforementioned distributions. The main conclusion is that the GBP distribution is the most convenient to be used in the PERT methodology because its mean is almost as moderate as that of trapezoidal and its variance is much higher than that of the rest of distributions. As a consequence, it can be stated that the GBP distribution is an alternative to the other four-parameter distributions.

Keywords

Biparabolic TSP distribution PERT Constant variance Mesokurtic 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Azaron, A., Katagiri, H., & Sakawa, M. (2007). Time-cost trade-off via optimal control theory in Markov PERT networks. Annals of Operations Research, 150, 47–64. CrossRefGoogle Scholar
  2. Ben-Yair, A. (2010). Upon implementing the beta distribution in project management (Working paper). Department of Industrial Engineering and Management, Negev Academic College of Engineering, Israel. http://braude.ort.org.il/industrial/13thconf/html/.%5Cfiles%5C113_p.pdf.
  3. Bowman, R. A. (2007). Efficient sensitivity analysis of PERT network performance measures to significant changes in activity time parameters. Journal of the Operational Research Society, 58, 1354–1360. CrossRefGoogle Scholar
  4. Callejón, J., Pérez, E., & Ramos, A. (1996). La distribución trapezoidal como modelo probabilístico para la metodología PERT. In X reunión anual ASEPELT-España, Albacete (Spain). Google Scholar
  5. Chapman, C., & Ward, S. (2003). Constructively simple estimating: a project management example. Journal of the Operational Research Society, 54, 1050–1058. CrossRefGoogle Scholar
  6. Cho, J.-G., & Yum, B.-J. (2004). Functional estimation of activity criticality indices and sensitivity analysis of expected project completion time. Journal of the Operational Research Society, 55, 850–859. CrossRefGoogle Scholar
  7. Chow, G. (1960). Test of equality between sets of coefficients in two linear regressions. Econometrica, 28, 591–605. CrossRefGoogle Scholar
  8. Clark, C. E. (1962). The PERT model for the distribution of an activity time. Operations Research, 10, 405–406. CrossRefGoogle Scholar
  9. Cruz, S., García, J., & Herrerías, R. (1999). Stochastic models alternative to the classical PERT for the treatment of the risk: mesokurtic and of constant variance. Central European Journal of Operations Research, 7(3), 159–175. Google Scholar
  10. Farnum, N. R., & Stanton, L. W. (1987). Some results concerning the estimation of beta distribution parameters in PERT. Journal of the Operational Research Society, 38(3), 287–290. Google Scholar
  11. Gallagher, C. (1987). A note on PERT assumptions. Management Science, 33(10), 1360. CrossRefGoogle Scholar
  12. García, C. B., García, J., & Cruz, S. (2009). The generalized biparabolic distribution. International Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, 17(3), 377–396. CrossRefGoogle Scholar
  13. García, J. (1999). El método de subasta como complemento al PERT clásico. Estudios de Economía Aplicada, 10, 71–88. Google Scholar
  14. García, J., & Cruz, S. (2001). The aggregate opinion of several experts in the fuzzy and PERT methodologies. Fuzzy Economic Review, 6(2), 23–36. Google Scholar
  15. García, J., Cruz, S., & Andújar, A. S. (1998). La confiance de l’expert comme base pour particulariser la bêta du PERT. Revista Europea de Dirección y Economía de la Empresa, 7(1), 47–56. Google Scholar
  16. García, J., Cruz, S., & García, C. B. (2005). The two-sided power distribution for the treatment of uncertainty in PERT. Statistical Methods & Applications, 14, 209–222. CrossRefGoogle Scholar
  17. Hartley, H. O., & Wortham, A. W. (1966). A statistical theory for PERT critical path analysis. Management Science, 12(10), B-469–B-481. CrossRefGoogle Scholar
  18. Herrerías, R. (1989). Utilización de modelos probabilísticos alternativos para el método PERT: aplicaciones al análisis de inversiones. In Estudios de economía aplicada (pp. 89–112). Valladolid: Secretariado de Publicaciones de la Universidad de Valladolid. Google Scholar
  19. Herrerías, R., García, J., & Cruz, S. (2003). A note on the reasonableness of PERT hypotheses. Operations Research Letters, 31(1), 60–62. CrossRefGoogle Scholar
  20. Hill, J., Thomas, L. C., & Allen, D. E. (2000). Experts’ estimates of task durations in software development projects. International Journal of Project Management, 18, 13–21. CrossRefGoogle Scholar
  21. Johnson, D. (1998). The robustness of mean and variance approximations in risk analysis. Journal of the Operational Research Society, 49, 253–262. Google Scholar
  22. Kamburowski, J. (1997). New validations of PERT times. Omega, The International Journal of Management Science, 25(3), 323–328. CrossRefGoogle Scholar
  23. Littlefield, T. K., Jr., & Randolph, P. H. (1987). Another note on PERT times. Management Science, 33, 1357–1359. CrossRefGoogle Scholar
  24. Malcolm, D., Roseboom, J., Clark, C., & Fazar, W. (1959). Application of a technique for research and development program evaluation. Operations Research, 7, 646–669. CrossRefGoogle Scholar
  25. Mohan, S., Gopalakrishnan, M., Balasubramanian, H., & Chandrashekar, A. (2007). A lognormal approximation of activity duration in PERT using two time estimates. Journal of the Operational Research Society, 58, 827–831. CrossRefGoogle Scholar
  26. Neuwirth, S. I., & Zelnick, J. (1963). Management control and information. Journal of Accountancy, 5, 83–87. Google Scholar
  27. Ricciardi, K. L., Pinder, G. F., & Belitz, K. (2005). Comparison of the lognormal and beta distribution functions to describe the uncertainty in permeability. Journal of Hydrology, 313, 248–256. CrossRefGoogle Scholar
  28. Sasieni, M. W. (1986). A note on PERT times. Management Science, 32(12), 1652–1653. CrossRefGoogle Scholar
  29. Shih, N.-H. (2005). Estimating completion-time distribution in stochastic activity networks. Journal of the Operational Research Society, 56, 744–749. CrossRefGoogle Scholar
  30. Taha, H. A. (1981). Investigación de operaciones (2nd ed.) México: Representaciones y Servicios de Ingeniería. S.A. Google Scholar
  31. van Dorp, J. R., & Kotz, S. (2002). The standard two-sided power distribution and its properties: with applications in financial engineering. The American Statistician, 56(2), 90–99. CrossRefGoogle Scholar
  32. van Dorp, J. R., & Kotz, S. (2003). Generalizations of two-sided power distributions and their convolution. Communications in Statistics: Theory and Methods, 32(9), 1703–1723. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Catalina Beatriz García García
    • 1
  • José García Pérez
    • 2
  • Salvador Cruz Rambaud
    • 3
  1. 1.Departamento de Métodos Cuantitativos para la Economía y la EmpresaUniversidad de GranadaGranadaSpain
  2. 2.Departamento de Economía AplicadaUniversidad de AlmeríaAlmeríaSpain
  3. 3.Departamento de Dirección y Gestión de EmpresasUniversidad de AlmeríaAlmeríaSpain

Personalised recommendations