Annals of Operations Research

, Volume 181, Issue 1, pp 485–501

# A method for solving the general parametric linear complementarity problem

Article

## Abstract

This paper presents a solution method for the general (mixed integer) parametric linear complementarity problem pLCP(q(θ),M), where the matrix M has a general structure and integrality restriction can be enforced on the solution. Based on the equivalence between the linear complementarity problem and mixed integer feasibility problem, we propose a mixed integer programming formulation with an objective of finding the minimum 1-norm solution for the original linear complementarity problem. The parametric linear complementarity problem is then formulated as multiparametric mixed integer programming problem, which is solved using a multiparametric programming algorithm. The proposed method is illustrated through a number of examples.

### Keywords

Parametric linear complementarity problem Minimum norm solution Mixed integer programming Multiparametric programming

## Preview

### References

1. Chandrasekaran, R., Kabadi, S. N., & Sridhar, R. (1998). Integer solution for linear complementarity problem. Mathematics of Operations Research, 23, 390–402.
2. Cottle, R. W. (1972). Monotone solutions of the parametric linear complementarity problem. Mathematical Programming, 3, 210–224.
3. Cottle, R. W., Pang, J. S., & Stone, R. E. (1992). The linear complementarity problem. San Diego: Academic Press. Google Scholar
4. Danao, R. A. (1997). On the parametric linear complementarity problem. Journal of Optimization Theory and Applications, 95, 445–454.
5. Dua, V., & Pistikopoulos, E. N. (2000). An algorithm for the solution of multiparametric mixed integer linear programming problems. Annals of Operation Research, 99, 123–139.
6. Eaves, B. C. (1976). A finite algorithm for the linear exchange model. Journal of Mathematical Economics, 3, 197–203.
7. Ferris, M. C., & Pang, J. S. (1997). Engineering and economic applications of complementarity problems. SIAM Review, 39, 669–713.
8. Gailly, B., Installe, M., & Smeers, Y. (2001). A new resolution method for the parametric linear complementarity problem. European Journal of Operational Research, 128, 639–646.
9. Jones, C. N., & Morrari, M. (2006). Multiparametric linear complementarity problems. In 45th IEEE conference on decision and control (pp. 5687–5692). Google Scholar
10. Kaneko, I. (1977). Isotone solutions of parametric linear complementarity problems. Mathematical Programming, 12, 48–59.
11. Li, Z., & Ierapetritou, M. G. (2007). Process scheduling under uncertainty using multiparametric programming. AIChE Journal, 53, 3183–3203.
12. Maier, G. (1972). Problem—on parametric linear complementarity problems. SIAM Review, 14, 364–365.
13. Martin, R. K. (1999). Large scale linear and integer optimization: a unified approach. Norwell: Kluwer Academic. Google Scholar
14. Megiddo, N. (1977). On monotonicity in parametric linear complementarity problems. Mathematical Programming, 12, 60–66.
15. Murty, K. G. (1971). On the parametric complementarity problem. In Engineering summer conference notes. University of Michigan. Google Scholar
16. Pardalos, P. M., & Nagurney, A. (1990). The integer linear complementarity problem. International Journal of Computer Mathematics, 31, 205–214.
17. Pardalos, P. M., & Rosen, J. B. (1988). Global optimization approach to the linear complementarity problem. SIAM Journal on Scientific and Statistical Computing, 9, 341–353.
18. Rosen, J. B. (1990). Minimum norm solution to the linear complementarity problem. In Functional analysis, optimization, and mathematical economics. London: Oxford University Press. Google Scholar
19. Tammer, K. (1998). Parametric linear complementarity problems. In A. V. Fiacco (Ed.), Mathematical programming with data perturbations (pp. 399–415). Boca Raton: CRC Press. Google Scholar
20. Tondel, P., Johansen, T., & Bemporad, A. (2003). An algorithm for multi-parametric quadratic programming and explicit MPC solutions. Automatica, 39, 489–497.