Advertisement

Annals of Operations Research

, Volume 181, Issue 1, pp 377–392 | Cite as

Influential observations in frontier models, a robust non-oriented approach to the water sector

  • Kristof De Witte
  • Rui C. Marques
Open Access
Article

Abstract

This paper suggests an outlier detection procedure which applies a nonparametric model accounting for undesired outputs and exogenous influences in the sample. Although efficiency is estimated in a deterministic frontier approach, each potential outlier initially benefits of the doubt of not being an outlier. We survey several outlier detection procedures and select five complementary methodologies which, taken together, are able to detect all influential observations. To exploit the singularity of the leverage and the peer count, the super-efficiency and the order-m method and the peer index, it is proposed to select these observations as outliers which are simultaneously revealed as atypical by at least two of the procedures. A simulated example demonstrates the usefulness of this approach. The model is applied to the Portuguese drinking water sector, for which we have an unusually rich data set.

Keywords

Nonparametric estimation Frontier Non-oriented Outliers Water sector 

References

  1. Aida, K., Cooper, W., Pastor-Ciurana, J., & Sueyoshi, T. (1998). Evaluating water supply services in Japan with RAM: a range-adjusted measure of inefficiency. Omega International Journal of Management Science, 26(2), 207–232. CrossRefGoogle Scholar
  2. Andersen, P., & Petersen, N. (1993). A procedure for ranking efficient units in data envelopment analysis. Management Science, 39(10), 1261–1264. CrossRefGoogle Scholar
  3. Aragon, Y., Daouia, A., & Thomas-Agnan, C. (2005). Nonparametric frontier estimation: a conditional quantile-based approach. Econometric Theory, 21(2), 358–389. CrossRefGoogle Scholar
  4. Banker, R., & Chang, H. (2006). The super-efficiency procedure for outlier identification, not for ranking efficient units. European Journal of Operational Research, 175(2), 1311–1320. CrossRefGoogle Scholar
  5. Brockett, P., Rousseau, J., Wang, Y., & Zhow, L. (1997). Implementation of DEA models using GAMS (Research Report 765). University of Texas, Austin. Google Scholar
  6. Cazals, C., Florens, J., & Simar, L. (2002). Nonparametric frontier estimation: a robust approach. Journal of Econometrics, 106, 1–25. CrossRefGoogle Scholar
  7. Chambers, R., Chung, Y., & Färe, R. (1998). Profit, directional distance functions, and Nerlovian efficiency. Journal of Optimalization Theory and Applications, 98, 351–364. CrossRefGoogle Scholar
  8. Charnes, A., Cooper, W. W., & Rhodes, E. (1978). Measuring efficiency of decision-making units. European Journal of Operational Research, 2(6), 428–449. CrossRefGoogle Scholar
  9. Charnes, A., Cooper, W., Golany, B., Seiford, L., & Stutz, J. (1985). Foundations of data envelopment analysis for Pareto-Koopmans efficient empirical production functions. Journal of Econometrics, 30(1), 91–107. CrossRefGoogle Scholar
  10. Chen, W., & Johnson, A. (2006). Detecting efficient and inefficient outliers in data envelopment analysis. Working Papers Series, Available at SSRN. Google Scholar
  11. Cherchye, L., Lovell, C. A. K., Moesen, W., & Van Puyenbroeck, T. (2007). One market, one number? A composite indicator assessment of EU internal market dynamics. European Economic Review, 51, 749–779. CrossRefGoogle Scholar
  12. Cooper, W., Park, K., & Pastor, J. (1999). RAM: a range adjusted measure of efficiency for use with additive models, and relations to other models and measures in DEA. Journal of Productivity Analysis, 11, 5–42. CrossRefGoogle Scholar
  13. Chung, Y., Fare, R., & Grosskopf, S. (1997). Productivity and undesirable outputs: a directional distance function approach. Journal of Environmental Management, 51(3), 229–240. CrossRefGoogle Scholar
  14. Daraio, C., & Simar, L. (2005). Introducing environmental variables in nonparametric frontier models: a probabilistic approach. Journal of Productivity Analysis, 24, 93–121. CrossRefGoogle Scholar
  15. Daraio, C., & Simar, L. (2007). Advanced robust and nonparametric methods in efficiency analysis. In Series: studies in productivity and efficiency. Berlin: Springer. Google Scholar
  16. Daouia, A., & Simar, L. (2007). Nonparametric efficiency analysis: a multivariate conditional quantile approach. Journal of Econometrics, 140(2), 375–400. CrossRefGoogle Scholar
  17. Daouia, A., & Ruiz-Gazen, A. (2006). Robust nonparametric frontier estimators: influence function and qualitative robustness. Statistica Sinica, 16(4), 1233–1254. Google Scholar
  18. Deprins, D., Simar, L., & Tulkens, H. (1984). Measuring labor efficiency in post offices. In M. Marchand, P. Pestieau, & H. Tulkens (Eds.), The performance of public enterprises: concepts and measurements (pp. 243–267). Amsterdam: North-Holland. Google Scholar
  19. Despotis, D. (2005). A reassessment of the human development index via data envelopment analysis. Journal of the Operations Research Society, 56, 969–980. CrossRefGoogle Scholar
  20. De Witte, K., & Marques, R. (2007). Designing incentives to local public utilities, an international comparison to the drinking water sector. CES Discussion Paper Series DPS 07.32. Google Scholar
  21. De Witte, K., & Korteleinen, M. (2008). Blaming the exogenous environment? Conditional efficiency estimation with continuous and discrete environmental variables. CES Discussion Paper Series DPS 08.33. Google Scholar
  22. Färe, R., Grosskopf, S., & Lovell, K. A. (1985). The measurement of efficiency of production. Boston: Kluwer. Google Scholar
  23. Fox, K., Hill, R., & Diewert, E. (2004). Identifying outliers in multi-output models. Journal of Productivity Analysis, 22(12), 73–94. CrossRefGoogle Scholar
  24. Fried, H., Lovell, C. A. K., & Schmidt, S. (2008). The measurement of productive efficiency and productivity growth. London: Oxford University Press, 638 p. CrossRefGoogle Scholar
  25. Jahanshahloo, G., Hosseinzadeh, F., Shoja, G., Tohidi, G., & Razavyan, S. (2004). A method for detecting influential observation in radial DEA models. Applied Mathematics and Computation, 147(2), 415–421. CrossRefGoogle Scholar
  26. Johnson, A., & McGinnis, L. (2006). An outlier detection methodology with consideration for an inefficient frontier. Paper presented at the NAPW IV, June 2006, New York. Google Scholar
  27. Lambert, D., Dichev, D., & Raffiee, K. (1993). Ownership and sources of inefficiency in the provision of water services. Water Resources Research, 29(6), 1573–1578. CrossRefGoogle Scholar
  28. Mahlberg, B., & Raveh, A. (2007). Co-plot: a useful tool to detect outliers in DEA. Paper presented at the EWEPA X, June 2007, Lille. Google Scholar
  29. Marques, R., & Silva, D. (2006). Statistical inference of efficiency estimators obtained with the DEA nonparametric frontier technique. A bootstrap methodology. Portuguese Operational Research Journal, 26(2), 89–110. Google Scholar
  30. Melyn, W., & Moesen, W. (1991). Towards a synthetic indicator of macroeconomic performance: unequal weighting when limited information is available. Public Economics Research Paper 17. KU Leuven. Google Scholar
  31. Pastor, J., Ruiz, J., & Sirvent, I. (1999). A statistical test for detecting influential observations in DEA. European Journal of Operational Research, 115(3), 542–554. CrossRefGoogle Scholar
  32. Portela, M., Borges, P., & Thanassoulis, E. (2003). Finding closest targets in non-oriented DEA models: the case of convex and non-convex technologies. Journal of Productivity Analysis, 19(23), 251–269. CrossRefGoogle Scholar
  33. Ray, S., & Mukherjee, K. (2007). Efficiency in managing the environment and the opportunity cost of pollution abatement. Working papers 2007-09, University of Connecticut, Department of Economics. Google Scholar
  34. Simar, L. (2003). Detecting outliers in frontier models: a simple approach. Journal of Productivity Analysis, 20, 391–424. CrossRefGoogle Scholar
  35. Sousa, M., & Stosic, B. (2005). Technical efficiency of the Brazilian municipalities: correcting nonparametric frontier measurement of outliers. Journal of Productivity Analysis, 24, 157–181. CrossRefGoogle Scholar
  36. Torgersen, A., Førsund, F., & Kittelsen, S. (1996). Slack-adjusted efficiency measures and ranking of efficient units. Journal of Productivity Analysis, 7(4), 379–398. CrossRefGoogle Scholar
  37. Wilson, P. (1993). Detecting outliers in deterministic nonparametric frontier models with multiple outputs. Journal of Business & Economic Statistics, 11(3), 319–323. CrossRefGoogle Scholar
  38. Wilson, P. (1995). Detecting influential observations in data envelopment analysis. Journal of Productivity Analysis, 6(1), 27–45. CrossRefGoogle Scholar
  39. Yin, R.K. (2003). Applications of case study research. Thousand Oaks: Sage Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  1. 1.Centre for Economic StudiesUniversity of Leuven (KU Leuven)LeuvenBelgium
  2. 2.Top Institute for Evidence Based Education ResearchMaastricht UniversityMaastrichtThe Netherlands
  3. 3.Centre of Urban and Regional SystemsTechnical University of LisbonLisbonPortugal

Personalised recommendations