Advertisement

Annals of Operations Research

, Volume 179, Issue 1, pp 105–130 | Cite as

A supernodal formulation of vertex colouring with applications in course timetabling

  • Edmund K. Burke
  • Jakub Mareček
  • Andrew J. Parkes
  • Hana Rudová
Article

Abstract

For many problems in scheduling and timetabling, the choice of a mathematical programming formulation is determined by the formulation of the graph colouring component. This paper briefly surveys seven known integer programming formulations of vertex colouring and introduces a new approach using “supernodes”.

In the definition of George and McIntyre (SIAM J. Numer. Anal. 15(1):90–112, 1978), a “supernode” is a complete subgraph, within which every pair of vertices have the same neighbourhood outside of the subgraph. A polynomial-time algorithm for obtaining the best possible partition of an arbitrary graph into supernodes is given. This makes it possible to use any formulation of vertex multicolouring to encode vertex colouring. Results of empirical tests on benchmark instances in graph colouring (DIMACS) and timetabling (Udine Course Timetabling) are also provided and discussed.

Keywords

Vertex colouring Graph colouring Multicolouring Supernode Module Integer programming 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aardal, K. I., Hoesel, S. P. M., van Koster, A. M. C. A., & Mannino, C. (2007). Models and solution techniques for frequency assignment problems. Annals of Operation Research, 153, 79–129. CrossRefGoogle Scholar
  2. Achlioptas, D., & Naor, A. (2005). The two possible values of the chromatic number of a random graph. Annals of Mathematics, 163(3), 1333–1349. Google Scholar
  3. Achterberg, T. (2007). Constraint integer programming. Unpublished doctoral dissertation, Berlin. Google Scholar
  4. Appa, G., Magos, D., & Mourtos, I. (2005). On the system of two all_different predicates. Information Processing Letters, 94(3), 99–105. CrossRefGoogle Scholar
  5. Avella, P., & Vasil’ev, I. (2005). A computational study of a cutting plane algorithm for university course timetabling. Journal of Scheduling, 8(6), 497–514. CrossRefGoogle Scholar
  6. Barbosa, V. C., & Szwarcfiter, J. L. (1999). Generating all the acyclic orientations of an undirected graph. Information Processing Letters, 72, 71–74. CrossRefGoogle Scholar
  7. Barbosa, V. C., Assis, C. A. G., & Nascimento, J. O. do. (2004). Two novel evolutionary formulations of the graph coloring problem. Journal of Combinatorial Optimization, 8(1), 41–63. CrossRefGoogle Scholar
  8. Beyrouthy, C. B., Burke, E. K., Silva, D. L., McCollum, B., McMullan, P., & Parkes, A. J. (2008). Towards improving the utilisation of university teaching space. Journal of the Operational Research Society, 60(1), 130–143. CrossRefGoogle Scholar
  9. Bollobás, B. (2001). Random graphs. Cambridge: Cambridge University Press. Google Scholar
  10. Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140(2), 266–280. CrossRefGoogle Scholar
  11. Burke, E. K., Werra, D., & Kingston, J. H. (2004). Applications to timetabling. In J. L. Gross & J. Yellen (Eds.), Handbook of graph theory (pp. 445–474). Boca Raton: CRC Press. Google Scholar
  12. Burke, E. K., Mareček, J., Parkes, A. J., & Rudová, H. (2008). Penalising patterns in timetables: novel integer programming formulations. In S. Nickel & J. Kalcsics (Eds.), Operations research proceedings 2007 (pp. 409–414). Berlin: Springer. CrossRefGoogle Scholar
  13. Campêlo, M., Corrêa, R. C., & Frota, Y. (2003). Cliques, holes and the vertex coloring polytope. Information Processing Letters, 89(4), 159–164. CrossRefGoogle Scholar
  14. Campêlo, M., Campos, V. A., & Corrêa, R. C. (2008). On the asymmetric representatives formulation for the vertex coloring problem. Discrete Applied Mathematics, 156(7), 1097–1111. CrossRefGoogle Scholar
  15. Campêlo, M., Campos, V. A., & Corrêa, R. C. (2009). Um algoritmo de planos-de-corte para o número cromático fracionário de um grafo. Pesquisa Operacional, 29(1), 179–193. CrossRefGoogle Scholar
  16. Caprara, A. (1998). Properties of some ilp formulations of a class of partitioning problems. Discrete Applied Mathematics, 87(1–3), 11–23. CrossRefGoogle Scholar
  17. Carter, M. W., & Laporte, G. (1997). Recent developments in practical course timetabling. In E. K. Burke & M. W. Carter (Eds.), LNCS: Vol. 1408. Practice and theory of automated timetabling (pp. 3–19). Berlin: Springer. CrossRefGoogle Scholar
  18. Catanzaro, D., Godi, A., & Labbé, M. (2008). A class representative model for pure parsimony haplotyping (Tech. Rep. Nos. Dated October 29, 2008). Bruxelles, Belgium: Université Libre de Bruxelles. Google Scholar
  19. Chudnovsky, M., Robertson, N., Seymour, P., & Thomas, R. (2006). The strong perfect graph theorem. Annals of Mathematics, 164(1), 51–229. CrossRefGoogle Scholar
  20. Coll, P., Marenco, J., Méndez-Díaz, I., & Zabala, P. (2002). Facets of the graph coloring polytope. Annals of Operation Research, 116, 79–90. CrossRefGoogle Scholar
  21. Crescenzi, P., Kann, V., Halldórsson, M., Karpinski, M., & Woeginger, G. (2005). A compendium of NP optimization problems (Available on-line). Google Scholar
  22. Cunningham, W. H., & Edmonds, J. (1980). A combinatorial decomposition theory. Canadian Journal of Mathematics, 32(3), 734–765. Google Scholar
  23. Duff, I. S., & Reid, J. K. (1983). The multifrontal solution of indefinite sparse symmetric linear. ACM Transactions on Mathematical Software, 9(3), 302–325. CrossRefGoogle Scholar
  24. Eisenstat, S. C., Elman, H. C., Schultz, M. H., & Sherman, A. H. (1984). The (new) yale sparse matrix package. In Elliptic problem solvers, II (Monterey, Calif., 1983), (pp. 45–52). San Diego: Academic Press. Google Scholar
  25. Feige, U., & Kilian, J. (1998). Zero knowledge and the chromatic number. Journal of Computer and System Science, 57(2), 187–199. CrossRefGoogle Scholar
  26. Galinier, P., & Hertz, A. (2006). A survey of local search methods for graph coloring. Computers & Operations Research, 33(9), 2547–2562. CrossRefGoogle Scholar
  27. Gallai, T. (1967). Transitiv orientierbare Graphen. Acta Mathematica Academiae Scientiarum Hungar, 18, 25–66. CrossRefGoogle Scholar
  28. Gallai, T. (1968). On directed paths and circuits. In P. Erdös & G. Katobna (Eds.), Theory of graphs (pp. 115–118). San Diego: Academic Press. Google Scholar
  29. Garey, M. R., & Johnson, D. S. (1976). The complexity of near-optimal graph coloring. Journal of the ACM, 23(1), 43–49. CrossRefGoogle Scholar
  30. Gaspero, L. D., & Schaerf, A. (2003). Multi neighborhood local search with application to the course timetabling problem. In E. K. Burke & P. D. Causmaecker (Eds.), LNCS: Vol. 2740. Practice and theory of automated timetabling (pp. 262–275). Berlin: Springer. Google Scholar
  31. Gaspero, L. D., & Schaerf, A. (2006). Neighborhood portfolio approach for local search applied to timetabling problems. Journal of Mathematical Modelling and Algorithms, 5(1), 65–89. CrossRefGoogle Scholar
  32. Gebremedhin, A. H., Manne, F., & Pothen, A. (2005). What color is your Jacobian? Graph coloring for computing derivatives. SIAM Review, 47(4), 629–705. CrossRefGoogle Scholar
  33. George, A., & McIntyre, D. R. (1978). On the application of the minimum degree algorithm to finite element systems. SIAM Journal of Numerical Analysis, 15(1), 90–112. CrossRefGoogle Scholar
  34. Golumbic, M. C. (1977). The complexity of comparability graph recognition and coloring. Computing, 18(3), 199–208. CrossRefGoogle Scholar
  35. Gross, J. L., & Yellen, J. (2004). Handbook of graph theory. Boca Raton: CRC Press. Google Scholar
  36. Habib, M., & Maurer, M. C. (1979). On the X-join decomposition for undirected graphs. Discrete Applied Mathematics, 1(3), 201–207. CrossRefGoogle Scholar
  37. Hansen, P., Labbé, M., & Schindl, D. (2005). Set covering and packing formulations of graph coloring: algorithms and first polyhedral results (Tech. Rep. No. G-2005-76). Montreal, Canada: GERAD. Google Scholar
  38. Johnson, D. J., & Trick, M. A. (1996). Cliques, coloring, and satisfiability: Second DIMACS implementation challenge, Workshop, October 11–13, 1993. Providence: American Mathematical Society. Google Scholar
  39. Kaibel, V., & Margot, F. (2007). Personal communication at MIP Workshop 2007 in Montreal, Canada. Google Scholar
  40. Kaibel, V., & Pfetsch, M. (2008). Packing and partitioning orbitopes. Mathematical Programming, 114(1), 1–36. doi: 10.1007/s10107-006-0081-5. CrossRefGoogle Scholar
  41. Kaibel, V., Peinhardt, M., & Pfetsch, M. E. (2007). Orbitopal fixing. In M. Fischetti & D. P. Williamson (Eds.), LNCS: Vol. 4513. Integer programming and combinatorial optimization (pp. 74–88). New York: Springer. CrossRefGoogle Scholar
  42. Karp, R. M. (1972). Reducibility among combinatorial problems. In R. E. Miller & J. W. Thatcher (Eds.), Complexity of computer computations (pp. 85–103). New York: Plenum. Google Scholar
  43. Kiaer, L., & Yellen, J. (1992). Weighted graphs and university course timetabling. Computers Operations Research, 19(1), 59–67. CrossRefGoogle Scholar
  44. Koch, T. (2004). Rapid mathematical programming. Unpublished doctoral dissertation, Berlin (ZIB Technical Report TR-04-58). Google Scholar
  45. Krajíček, J. (1997). Interpolation theorems, lower bounds for proof systems, and independence results for bounded arithmetic. Journal of Symbolic Logic, 62(2), 457–486. CrossRefGoogle Scholar
  46. Lee, J. (2002). All-different polytopes. Journal of Combinatorial Optimization, 6(3), 335–352. CrossRefGoogle Scholar
  47. Lee, J., & Margot, F. (2007). On a binary-encoded ILP coloring formulation. INFORMS Journal of Computing, 19(3), 406–415. CrossRefGoogle Scholar
  48. Margot, F. (2002). Pruning by isomorphism in branch-and-cut. Mathematical Programming, 94, 71–90. CrossRefGoogle Scholar
  49. Margot, F. (2003). Exploiting orbits in symmetric ILP. Mathematical Programming, 98, 3–31. CrossRefGoogle Scholar
  50. Margot, F.: (2007). Symmetric ILP: Coloring and small integers. Discrete Optimization, 4, 40–62. CrossRefGoogle Scholar
  51. Mehrotra, A., & Trick, M. A. (1996). A column generation approach for graph coloring. INFORMS Journal of Computing, 8(4), 344–354. CrossRefGoogle Scholar
  52. Méndez-Díaz, I., & Zabala, P. (2008). A cutting plane algorithm for graph coloring. Discrete Applied Mathematics, 156, 2. Google Scholar
  53. Möhring, R. H., & Radermacher, F. J. (1984). Substitution decomposition for discrete structures and connections with combinatorial optimization. In Algebraic and combinatorial methods in operations research (Vol. 95, pp. 257–355). Amsterdam: North-Holland. CrossRefGoogle Scholar
  54. Muller, J. H., & Spinrad, J. (1989). Incremental modular decomposition. Journal of the ACM, 36(1), 1–19. CrossRefGoogle Scholar
  55. Murray, K., Müller, T., & Rudová, H. (2007). Modeling and solution of a complex university course timetabling problem. In E. K. Burke & H. Rudová (Eds.), LNCS: Vol. 3867. Practice and theory of automated timetabling (pp. 193–213). Berlin: Springer. CrossRefGoogle Scholar
  56. Nešetřil, J., & Tardif, C. (2008). A dualistic approach to bounding the chromatic number of a graph. European Journal of Combinatorics, 29(1), 254–260. CrossRefGoogle Scholar
  57. Ostrowski, J., Linderoth, J., Rossi, F., & Smriglio, S. (2007). Orbital branching. In M. Fischetti & D. P. Williamson (Eds.), LNCS: Vol. 4513. Integer programming and combinatorial optimization (pp. 104–118). New York: Springer. CrossRefGoogle Scholar
  58. Petrovic, S., & Burke, E. K. (2004). University timetabling. In J. Leung (Ed.), Handbook of scheduling: Algorithms, models, and performance analysis (pp. 1001–1023). Boca Raton: CRC Press. Google Scholar
  59. Prestwich, S. D. (2003). In E. Giunchiglia & A. Tacchella (Eds.), LNCS: Vol. 2919. Theory and applications of satisfiability testing (pp. 105–119). Berlin: Springer. CrossRefGoogle Scholar
  60. Roy, B. (1967). Nombre chromatique et plus longs chemins d’un graph. Revue AFIRO, 1, 127–132. Google Scholar
  61. Rudová, H., & Murray, K. (2003). University course timetabling with soft constraints. In E. K. Burke & P. D. Causmaecker (Eds.), LNCS: Vol. 2740. Practice and theory of automated timetabling (pp. 310–328). Berlin: Springer. Google Scholar
  62. Sabidussi, G. (1961). Graph derivatives. Mathematische Zeitschrift, 76, 385–401. CrossRefGoogle Scholar
  63. Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127. CrossRefGoogle Scholar
  64. Schimmelpfeng, K., & Helber, S. (2007). Application of a real-world university-course timetabling model solved by integer programming. OR Spectrum, 29, 783–803. CrossRefGoogle Scholar
  65. Schindl, D. (2004). Some combinatorial optimization problems in graphs with applications in telecommunications and tomography. Unpublished doctoral dissertation, Lausanne. Google Scholar
  66. Shapley, L. (1967). On committees. In New methods of thought and procedure (pp. 246–270). Berlin: Springer. Google Scholar
  67. Springer, D. L., & Thomas, D. E. (1994). Exploiting the special structure of conflict and compatibility graphs in high-level synthesis. IEEE Transactions on CAD of Integrated Circuits and Systems, 13(7), 843–856. CrossRefGoogle Scholar
  68. Vitaver, L. M. (1962). Determination of minimal coloring of vertices of a graph by means of boolean powers of the incidence matrix. Doklady Akademii Nauk SSSR, 147, 758–759. Google Scholar
  69. de Werra, D., & Hansen, P. (2003). Using stable sets to bound the chromatic number. Information Processing Letters, 87(3), 127–131. CrossRefGoogle Scholar
  70. Williams, H. P., & Yan, H. (2001). Representations of the all_different predicate of constraint satisfaction in integer programming. INFORMS Journal of Computing, 13(2), 96–103. CrossRefGoogle Scholar
  71. Zabala, P., & Méndez-Díaz, I. (2006). A branch-and-cut algorithm for graph coloring. Discrete Applied Mathematics, 154(5), 826–847. CrossRefGoogle Scholar
  72. Zuckerman, D. (2007). Linear degree extractors and the inapproximability of max clique and chromatic number. Theory of Computing, 3(6), 103–128. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Edmund K. Burke
    • 1
  • Jakub Mareček
    • 1
    • 2
  • Andrew J. Parkes
    • 1
  • Hana Rudová
    • 2
  1. 1.Automated Scheduling, Optimisation and Planning Group, School of Computer ScienceThe University of NottinghamNottinghamUK
  2. 2.Faculty of InformaticsMasaryk UniversityBrnoCzech Republic

Personalised recommendations