Annals of Operations Research

, Volume 194, Issue 1, pp 151–166 | Cite as

Designing the master schedule for demand-adaptive transit systems

  • Teodor Gabriel Crainic
  • Fausto Errico
  • Federico Malucelli
  • Maddalena Nonato


Demand-Adaptive Systems (DASs) display features of both traditional fixed-line bus services and purely on-demand systems such as dial-a-ride, that is, they offer demand-responsive services within the framework of traditional scheduled bus transportation. A DAS bus line serves a given set of compulsory stops according to a predefined schedule, which specifies the time windows associated with each stop, and thus provides the traditional use of a transit line without reservation. On the other hand, passengers may issue requests for transportation between two optional stops, inducing detours in the vehicle routes. The design of a DAS line is a complex planning process that requires to select the compulsory stops and to determine its master schedule in terms of the time windows associated with the compulsory stops. In this paper, we focus on determining the master schedule for a single DAS line. We propose a mathematical description and a solution method based on probabilistic approximations of several DAS line core characteristics. Results of numerical experiments are also given and analyzed.


Public transit Demand-responsive systems Demand-adaptive systems Scheduling Sampling methods 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Carpaneto, G., Dell’Amico, M., & Toth, P. (1995). Exact solution of large-scale, asymmetric traveling salesman problems. ACM Transactions on Mathematical Software, 21(4), 394–409. CrossRefGoogle Scholar
  2. Ceder, A., & Wilson, H. M. (1997). Public transport operations planning. In C. ReVelle, & A. E. McGarity (Eds.), Design and operation of civil and environmental engineering systems (pp. 395–434). New York: Wiley. Google Scholar
  3. Cordeau, J.-F., & Laporte, G. (2003). The Dial-a-Ride Problem (DARP): variants, modeling issues and algorithms. 4OR, 1(2), 89–101. CrossRefGoogle Scholar
  4. Crainic, T. G., Malucelli, F., & Nonato, M. (2000). A demand responsive feeder bus system. In CD-ROM of 7th World congress on intelligent transport systems, 7WC-ITS. Torino, Italia. Google Scholar
  5. Crainic, T. G., Malucelli, F., & Nonato, M. (2001). Flexible many-to-few + few-to-many = an almost personalized transit system. In Preprints TRISTAN IV—Triennial symposium on transportation analysis (Vol. 2, pp. 435–440). Faculdade de Ciências da Universidade de Lisboa and Universidade dos Açores, São Miguel, Açores, Portugal. Google Scholar
  6. Crainic, T. G., Malucelli, F., Nonato, M., & Guertin, F. (2005). Meta-heuristics for a class of demand-responsive transit systems. INFORMS Journal on Computing, 17(1), 10–24. CrossRefGoogle Scholar
  7. Crainic, T. G., Errico, F., Malucelli, F., & Nonato, M. (2007). Towards designing flexible transportation systems. In Proceedings of the triennial symposium on transportation analysis. TRISTAN VI, Phuket Island, Thailand. Google Scholar
  8. Crainic, T. G., Errico, F., Malucelli, F., & Nonato, M. (2008). Designing the master schedule for demand-adaptive transit systems. In Proceedings of the 7th international conference on the practice and theory of automated timetabling, CD-ROM. CIRRELT, Montréal, Canada. Google Scholar
  9. Desaulniers, G., & Hickman, M. D. (2007). Public transit. In C. Barnhart & G. Laporte (Eds.), Handbooks in operations research and management science : Vol. 14. Transportation (pp. 69–127). Amsterdam: North-Holland. CrossRefGoogle Scholar
  10. Errico, F. (2008). The design of flexible transit systems: models and solution methods. Ph.D. thesis, Politecnico di Milano, Italy. Google Scholar
  11. Hall, C. H. (2006). A framework for evaluation and design of an integrated public transport system. Ph.D. thesis, Linkopings Universitet, Sweden. Google Scholar
  12. Hickman, M., & Blume, K. (2001). Modeling cost and passenger level of service for integrated transit service. In S. Voß& J. R. Daduna (Eds.), Lecture notes in economics and mathematical systems : Vol. 505. Computer-aided scheduling of public transport (pp. 233–251). Berlin: Springer. CrossRefGoogle Scholar
  13. Horn, M. E. T. (2002). Multi-modal and demand-responsive passenger transport systems: a modelling framework with embedded control systems. Transportation Research A, 36, 167–188. CrossRefGoogle Scholar
  14. Ioachim, I., Desrosiers, J., Dumas, Y., & Solomon, M. M. (1995). A request clustering for door to door handicapped transportation. Transportation Science, 29(1), 63–68. CrossRefGoogle Scholar
  15. Malucelli, F., Nonato, M., & Pallottino, S. (1999). Some proposals on flexible transit. In T. A. Ciriani, E. L. Johnson, & R. Tadei (Eds.), Operations research in industry (pp. 157–182). New York: McMillian. Google Scholar
  16. Malucelli, F., Nonato, M., Crainic, T. G., & Guertin, F. (2001). Adaptive memory programming for a class of demand-responsive transit systems. In S. Voß& J. R. Daduna (Eds.), Lecture notes in economics and mathematical systems: Vol. 505. Computer-aided scheduling of public transport (pp. 253–273). Berlin: Springer. CrossRefGoogle Scholar
  17. Parragh, S., Doerner, K., & Hartl, R. (2008). A survey on pickup and delivery problems. Part II: transportation between pickup and delivery locations. Journal für Betriebswirtschaft, 58(2), 81–117. CrossRefGoogle Scholar
  18. Quadrifoglio, L., Dessouky, M. M., & Palmer, K. (2007). An insertion heuristic for scheduling mobility allowance shuttle transit (mast) services. Journal of Scheduling, 10(1), 25–40. CrossRefGoogle Scholar
  19. Toth, P., & Vigo, D. (1996). Fast local search algorithms for the handicapped persons transportation problem. In I. H. Osman & J. P. Kelly (Eds.), Meta-heuristics: theory & applications (pp. 677–690). Norwell: Kluwer Academic. Google Scholar
  20. TRB (2004). Operational experiences with flexible transit services (TCRP Synthesis Report, Vol. 53). Transportation Research Board. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Teodor Gabriel Crainic
    • 1
    • 2
  • Fausto Errico
    • 1
    • 2
  • Federico Malucelli
    • 3
  • Maddalena Nonato
    • 4
  1. 1.Département Management et Technologie, École des Sciences de la GestionUniversité du Quebec à MontrealMontréalCanada
  2. 2.CIRRELTMontréalCanada
  3. 3.DEIPolitecnico di MilanoMilanoItaly
  4. 4.Dipartimento di IngegneriaUniversità di FerraraFerraraItaly

Personalised recommendations