Annals of Operations Research

, Volume 194, Issue 1, pp 385–397 | Cite as

An XML format for benchmarks in High School Timetabling

  • Gerhard Post
  • Samad Ahmadi
  • Sophia Daskalaki
  • Jeffrey H. Kingston
  • Jari Kyngas
  • Cimmo Nurmi
  • David Ranson
Open Access
Article

Abstract

The High School Timetabling Problem is amongst the most widely used timetabling problems. This problem has varying structures in different high schools even within the same country or educational system. Due to lack of standard benchmarks and data formats this problem has been studied less than other timetabling problems in the literature. In this paper we describe the High School Timetabling Problem in several countries in order to find a common set of constraints and objectives. Our main goal is to provide exchangeable benchmarks for this problem. To achieve this we propose a standard data format suitable for different countries and educational systems, defined by an XML schema. The schema and datasets are available online.

Keywords

Timetabling High school Benchmark Xml Scheduling 

References

  1. Abramson, D. (1991). Constructing school timetables using simulated annealing: sequential and parallel algorithms. Management Science, 37, 98–113. CrossRefGoogle Scholar
  2. Birbas, T., Daskalaki, S., & Housos, E. (1997). Timetabling for Greek high schools. Journal of the Operational Research Society, 48, 1191–1200. Google Scholar
  3. Burke, E. K., & Petrovic, S. (2002). Recent research directions in automated timetabling. European Journal of Operational Research, 140, 266–280. CrossRefGoogle Scholar
  4. Burke, E. K., Kingston, J. H., & Pepper, P. A. (1998). A standard data format for timetabling instances. In E. Burke & M. Carter (Eds.), Lecture notes in computer science : Vol. 1408. Practice and theory of automated timetabling II (pp. 213–222). Berlin: Springer. CrossRefGoogle Scholar
  5. Burke, E. K., McCollum, B., McMullan, P., & Qu, R. (2006). Examination timetabling: a new formulation. In: Proceedings of the sixth international conference of the practice and theory of automated timetabling (PATAT 2006), Brno, 2006 (pp. 373–375). Google Scholar
  6. Carter, M., Laporte, G., & Lee, S. T. (1996). Examination timetabling: algorithmic strategies and applications. Journal of the Operational Research Society, 47, 373–383. Google Scholar
  7. Carter, M. W., & Laporte, G. (1998). Recent developments in practical course timetabling. In E. Burke & M. Carter (Eds.), Lecture notes in computer science : Vol. 1408. Practice and theory of automated timetabling II (pp. 3–19). Berlin: Springer. CrossRefGoogle Scholar
  8. Chand, A. (2004). A constraint based generic model for representing complete university timetabling data. In: Proceedings of the fifth international conference on the practice and theory of automated timetabling (PATAT 2004), Pittsburgh, 2004 (pp. 125–148). Google Scholar
  9. Cooper, T. B., & Kingston, J. (1993). The solution of real instances of the timetabling problem. The Computer Journal, 36, 645–653. CrossRefGoogle Scholar
  10. Cumming, A., & Paechter, B. (2005). Standard formats for timetabling data. Unpublished discussion session at the first international conference on the practice and theory of automated timetabling, Edinburgh, 2005. Google Scholar
  11. Curtois, T. (2006). Nurse rostering web site. http://www.cs.nott.ac.uk/~tec/NRP/.
  12. Custers, N., De Causmaecker, P., Demeester, P., & Vanden Berghe, G. (2005). Semantic components for timetabling. In E. Burke & M. Trick (Eds.), Lecture notes in computer science : Vol. 3616. Practice and Theory of Automated Timetabling V’ (pp. 17–33). Berlin: Springer. CrossRefGoogle Scholar
  13. De Causmaecker, P., Demeester, P., De Pauw-Waterschoot, P., & Vanden Berghe, G. (2000). Ontology for timetabling. In: Proceedings of the third international conference on the practice and theory of automated timetabling (PATAT 2000), Konstanz, 2000 (pp. 481–482). Google Scholar
  14. De Causmaecker, P., Demeester, P., Lu, Y., & Vanden Berghe, G. (2002). Using web standards for timetabling. In: Proceedings of the fourth international conference on the practice and theory of automated timetabling (PATAT 2002), Gent, 2002 (pp. 238–257). Google Scholar
  15. de Gans, O. B. (1981). A computer timetabling system for secondary schools in the Netherlands. European Journal of Operational Research, 7, 175–182. CrossRefGoogle Scholar
  16. de Haan, P., Landman, R., Post, G., & Ruizenaar, H. (2007). A case study for timetabling in a Dutch secondary school. In E. Burke & H. Rudová (Eds.), Lecture notes in computer science : Vol. 3867. Practice and theory of automated timetabling VI (pp. 267–279). Berlin: Springer. CrossRefGoogle Scholar
  17. de Werra, D. (1985). An introduction to timetabling. European Journal of Operational Research, 19, 151–162. CrossRefGoogle Scholar
  18. de Werra, D. (1999). On a multiconstrained model for chromatic scheduling. Discrete Applied Mathematics, 94, 171–180. CrossRefGoogle Scholar
  19. Easton, K., Nemhauser, G. L., & Trick, M. A. (2001). The travelling tournament problem: description and benchmarks. In Lecture notes in computer science : Vol. 2239. Principles and practice of constraint programming (CP 2001) (pp. 580–585). Berlin: Springer. CrossRefGoogle Scholar
  20. Gröbner, M., Wilke, P., & Büttcher, S. (2003). A standard framework for timetabling problems. In E. Burke & P. De Causmaecker (Eds.), Lecture notes in computer science : Vol. 2740. Practice and theory of automated timetabling IV (pp. 24–38). Berlin: Springer. CrossRefGoogle Scholar
  21. Kingston, J. H. (2001). Modelling timetabling problems with STTL. In E. K. Burke & W. Erben (Eds.), Lecture notes in computer science : Vol. 2079. Practice and theory of automated rimetabling III (pp. 309–321). Berlin: Springer. CrossRefGoogle Scholar
  22. Kingston, J. H. (2005). A tiling algorithm for high school timetabling. In E. Burke & M. Trick (Eds.), Lecture notes in computer science : Vol. 3616. Practice and theory of automated timetabling V (pp. 208–225). Berlin: Springer. CrossRefGoogle Scholar
  23. Kingston, J. H. (2009). The HSEval High School Timetable Evaluator. http://www.it.usyd.edu.au/~jeff/hseval.cgi.
  24. Kitagawa, F., & Ikeda, H. (1988). An existential problem of a weight-controlled subset and its application to school timetable construction’. Discrete Mathematics, 72, 195–211. CrossRefGoogle Scholar
  25. Monteiro da Mata, J., Luiz de Senna, A., & Augusto de Andrade, M. (1997). Towards a language for the specification of timetabling problems. In Proceedings of the second international conference on the practice and theory of automated timetabling (PATAT’97), Toronto, 1997 (pp. 330–333). Google Scholar
  26. Nurmi, K., & Kyngas, J. (2007). A framework for school timetabling problem. In: Proceedings of the 3rd multidisciplinary international scheduling conference: theory and applications, Paris, 2007 (pp. 386–393). Google Scholar
  27. Özcan, E. (2003). Towards an XML-based standard for timetabling problems: TTML, multidisciplinary Scheduling: theory and applications. In First international conference, MISTA ’03, Nottingham, Selected Papers (2005) (pp. 163–185). Google Scholar
  28. Paechter, B. (2003). International timetabling competition. http://www.idsia.ch/Files/ttcomp2002/.
  29. Post, G. (2008). High school timetabling web site. http://wwwhome.math.utwente.nl/~postgf/BenchmarkSchoolTimetabling/.
  30. Ranson, D., & Ahmadi, S. (2006). An extensible modelling framework for the examination timetabling problem. In E. Burke & H. Rudová (Eds.) Lecture notes in computer science : Vol. 3867. Practice and theory of automated timetabling VI (pp. 383–393). Berlin: Springer. CrossRefGoogle Scholar
  31. Reis, L. P., & Oliveira, E. (2001). A language for specifying complete timetabling problems. In E. K. Burke & W. Erben (Eds.) Lecture notes in computer science : Vol. 2079. Practice and theory of automated timetabling III (pp. 322–341). Berlin: Springer. CrossRefGoogle Scholar
  32. Schaerf, A. (1999). A survey of automated timetabling. Artificial Intelligence Review, 13(2), 87–127. CrossRefGoogle Scholar
  33. Valouxis, C., & Housos, E. (2003). Constraint programming approach for school timetabling. Computers & Operations Research, 30, 1555–1572. CrossRefGoogle Scholar
  34. Willemen, R. J. (2002). School timetable construction; algorithms and complexity. PhD thesis, Technical University Eindhoven, The Netherlands. Google Scholar
  35. Wright, M. (1996). School timetabling using heuristic search. Journal of Operational Research Society, 47, 347–357. Google Scholar

Copyright information

© The Author(s) 2010

Authors and Affiliations

  • Gerhard Post
    • 1
    • 2
  • Samad Ahmadi
    • 3
  • Sophia Daskalaki
    • 4
  • Jeffrey H. Kingston
    • 5
  • Jari Kyngas
    • 6
  • Cimmo Nurmi
    • 6
  • David Ranson
    • 7
  1. 1.Department of Applied MathematicsUniversity of TwenteEnschedeThe Netherlands
  2. 2.ORTECGoudaThe Netherlands
  3. 3.School of Computer ScienceDe Montfort UniversityLeicesterUK
  4. 4.Engineering Sciences DepartmentUniversity of PatrasRio PatrasGreece
  5. 5.School of Information TechnologiesThe University of SydneySydneyAustralia
  6. 6.Satakunta University of Applied SciencesPoriFinland
  7. 7.Department of InformaticsUniversity of SussexBrightonUK

Personalised recommendations