Advertisement

Annals of Operations Research

, Volume 194, Issue 1, pp 273–289 | Cite as

A time-dependent metaheuristic algorithm for post enrolment-based course timetabling

  • Rhyd Lewis
Article

Abstract

A metaheuristic-based algorithm is presented for the post enrolment-based course timetabling problem used in track-2 of the Second International Timetabling Competition (ITC2007). The featured algorithm operates in three distinct stages—a constructive phase followed by two separate phases of simulated annealing—and is time dependent, due to the fact that various run-time parameters are calculated automatically according to the amount of computation time available. Overall, the method produces results in line with the official finalists to the timetabling competition, though experiments show that this algorithm also seems to find certain instances more difficult to solve than others. A number of reasons for this latter feature are discussed.

Keywords

ITC2007 Post enrolment timetabling Metaheuristics Neighbourhood operators 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abramson, D., Krishnamoorthy, H., & Dang, H. (1996). Simulated annealing cooling schedules for the school timetabling problem. Asia-Pacific Journal of Operational Research, 16, 1–22. Google Scholar
  2. Atsuta, M., Nonobe, K., & Ibaraki, T. (2008). Itc-2007 track 2: An approach using general csp solver. www.cs.qub.ac.uk/itc2007/winner/bestcoursesolutions/Atsuta_et_al.pdf.
  3. Brelaz, D. (1979). New methods to color the vertices of a graph. Communications of the ACM, 22(4), 251–256. CrossRefGoogle Scholar
  4. Cambazard, H., Hebrard, E., Osullivan, B., & Papadopoulos, A. (2008). Local search and constraint programming for the post-enrolment-based course timetabling problem. In E. Burke & M. Gendreau (Eds.), Proceedings of the seventh international conference for the practice and theory of automated timetabling. Universite de Montreal, Canada. http://www.asap.cs.nott.ac.uk/patat/patat08.
  5. Chiarandini, M., & Stützle, T. (2002). An application of iterated local search to graph coloring. In I. D. Johnson, A. Mehrotra, & M. Trick (Eds.), Proceedings of the computational symposium on graph coloring and its generalizations. New York, USA (pp. 112–125). Google Scholar
  6. Chiarandini, M., Fawcett, C., & Hoos, H. (2008). A modular multiphase heuristic solver for post enrolment course timetabling. In E. Burke & M. Gendreau (Eds.), Proceedings of the seventh international conference for the practice and theory of automated timetabling. Universite de Montreal, Canada. http://www.asap.cs.nott.ac.uk/patat/patat08.
  7. Di Gaspero, L., McCollum, B., & Schaerf, A. (2007). The second international timetabling competition (itc-2007): Curriculum-based course timetabling (track 3). (Tech. Rep. QUB/IEEE/Tech/ITC2007/CurriculumCTT/v1.0/1). School of Computing, Queens University, Belfast. Google Scholar
  8. Kirkpatrick, S., Gelatt, C., & Vecchi, M. (1983). Optimization by simulated annealing. Science, 4598, 671–680. CrossRefGoogle Scholar
  9. Kostuch, P. (2005). The university course timetabling problem with a 3-phase approach. In E. Burke & M. Trick (Eds.) Practice and theory of automated timetabling (PATAT) V (pp. 109–125). Berlin: Springer. CrossRefGoogle Scholar
  10. Lewis, R. (2006). Metaheuristics for university course timetabling. Ph.D. thesis, School of Computing, Napier University, Edinburgh. Google Scholar
  11. Lewis, R. (2008). A time-dependent metaheuristic algorithm for post enrolment-based course timetabling. In E. Burke & M. Gendreau (Eds.), Proceedings of the seventh international conference for the practice and theory of automated timetabling. Universite de Montreal, Canada. http://www.asap.cs.nott.ac.uk/patat/patat08.
  12. Lewis, R., Paechter, B., & McCollum, B. (2007). Post enrolment based course timetabling: A description of the problem model used for track two of the second international timetabling competition (Cardiff Working Papers in Accounting and Finance A2007-3). Cardiff Business School, Cardiff University, ISSN: 1750-6658. Google Scholar
  13. Mayer, A., Nothegger, C., Chwatal, A., & Raidl, G. (2008). Solving the post enrolment course timetabling problem by ant colony optimization. In E. Burke & M. Gendreau (Eds.), Proceedings of the seventh international conference for the practice and theory of automated timetabling. Universite de Montreal, Canada. http://www.asap.cs.nott.ac.uk/patat/patat08.
  14. McCollum, B., McMullan, P., Burke, E., Parkes, A., & Qu, R. (2007). The second international timetabling competition: Examination track (Tech. Rep. QUB/IEEE/Tech/ITC2007/Exam/v4.0/17). School of Computing, Queens University, Belfast. Google Scholar
  15. McCollum, B., Schaerf, A., Paechter, B., McMullan, P., Lewis, R., Parkes, A., de Gaspero, L., Qu, R., & Burke, E. (2009). Setting the research agenda in automated timetabling: The second international timetabling competition. INFORMS Journal on Computing. doi: 10.1287/ijoc.1090.0320. Google Scholar
  16. Muller, T. (2008). ITC2007: Solver description. In E. Burke & M. Gendreau (Eds.), Proceedings of the seventh international conference for the practice and theory of automated timetabling. Universite de Montreal, Canada. http://www.asap.cs.nott.ac.uk/patat/patat08.
  17. Rossi-Doria, O., Samples, M., Birattari, M., Chiarandini, M., Knowles, J., Manfrin, M., Mastrolilli, M., Paquete, L., Paechter, B., & Stutzle, T. (2002). A comparison of the performance of different metaheuristics on the timetabling problem. In E. Burke & P. De Causmaecker (Eds.), Practice and theory of automated timetabling (PATAT) IV (pp. 329–351). Berlin: Springer. Google Scholar
  18. Socha, K., & Samples, M. (2003). Ant algorithms for the university course timetabling problem with regard to the state-of-the-art. In Evolutionary computation in combinatorial optimization (EvoCOP 2003) (pp. 334–345). Berlin: Springer. Google Scholar
  19. Thompson, J., & Dowsland, K. (1998). A robust simulated annealing based examination timetabling system. Computers and Operations Research, 25(7/8), 637–648. CrossRefGoogle Scholar
  20. van Laarhoven, P., & Aarts, E. (1987). Simulated annealing: Theory and applications. Reidel: Kluwer Academic. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Cardiff School of MathematicsPrifysgol Caerdydd/Cardiff UniversityCardiffUK

Personalised recommendations