Annals of Operations Research

, Volume 188, Issue 1, pp 63–76 | Cite as

The negative cycles polyhedron and hardness of checking some polyhedral properties

  • Endre Boros
  • Khaled Elbassioni
  • Vladimir Gurvich
  • Hans Raj Tiwary
Article

Abstract

Given a graph G=(V,E) and a weight function on the edges w:E→ℝ, we consider the polyhedron P(G,w) of negative-weight flows on G, and get a complete characterization of the vertices and extreme directions of P(G,w). Based on this characterization, and using a construction developed in Khachiyan et al. (Discrete Comput. Geom. 39(1–3):174–190, 2008), we show that, unless P=NP, there is no output polynomial-time algorithm to generate all the vertices of a 0/1-polyhedron. This strengthens the NP-hardness result of Khachiyan et al. (Discrete Comput. Geom. 39(1–3):174–190, 2008) for non 0/1-polyhedra, and comes in contrast with the polynomiality of vertex enumeration for 0/1-polytopes (Bussiech and Lübbecke in Comput. Geom., Theory Appl. 11(2):103–109, 1998). As further applications, we show that it is NP-hard to check if a given integral polyhedron is 0/1, or if a given polyhedron is half-integral. Finally, we also show that it is NP-hard to approximate the maximum support of a vertex of a polyhedron in ℝ n within a factor of 12/n.

Keywords

Flow polytope 0/1-polyhedron Vertex Extreme direction Enumeration problem Negative cycles Directed graph Half-integral polyhedra Maximum support Hardness of approximation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abdullahi, S. D., Dyer, M. E., & Proll, L. G. (2003). Listing vertices of simple polyhedra associated with dual LI(2) systems. In DMTCS: discrete mathematics and theoretical computer science, 4th international conference, DMTCS 2003, proceedings (pp. 89–96). Google Scholar
  2. Acuna, V., Chierichetti, F., Lacroix, V., Marchetti-Spaccamela, A., Sagot, M.-F., & Stougie, L. (2009). Modes and cuts in metabolic networks: complexity and algorithms. Biosystems, 95(1), 51–60. CrossRefGoogle Scholar
  3. Avis, D., & Fukuda, K. (1992). A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra. Discrete and Computational Geometry, 8(3), 295–313. Google Scholar
  4. Avis, D., & Fukuda, K. (1996). Reverse search for enumeration. Discrete Applied Mathematics, 65(1–3), 21–46. CrossRefGoogle Scholar
  5. Avis, D., Bremner, B., & Seidel, R. (1997). How good are convex hull algorithms. Computational Geometry: Theory and Applications, 7, 265–302. Google Scholar
  6. Björklund, A., Husfeldt, T., & Khanna, S. (2004). Approximating longest directed paths and cycles. In Automata, languages and programming: 31st international colloquium, ICALP (pp. 222–233). Google Scholar
  7. Boros, E., Elbassioni, K., Gurvich, V., & Makino, K. (2008). Generating vertices of polyhedra and related monotone generation problems. In Avis, D., Bremner, D., & Deza, A. (Eds.), Special issue on polyhedral computation : Vol. 48. CRM proceedings & lecture notes, centre de recherches mathématiques at the Université de Montréal (pp. 15–39). Providence: American Mathematical Society. Google Scholar
  8. Bremner, D., Fukuda, K., & Marzetta, A. (1998). Primal-dual methods for vertex and facet enumeration. Discrete and Computational Geometry, 20, 333–357. CrossRefGoogle Scholar
  9. Bussieck, M. R., & Lübbecke, M. E. (1998). The vertex set of a 0/1 polytope is strongly ℘-enumerable. Computational Geometry: Theory and Applications, 11(2), 103–109. Google Scholar
  10. Ding, G., Feng, L., & Zang, W. (2008). The complexity of recognizing linear systems with certain integrality properties. Math. Program., Ser. A, 114(2), 321–334. CrossRefGoogle Scholar
  11. Garg, N., & Vazirani, V. V. (1995). A polyhedron with all s-t cuts as vertices, and adjacency of cuts. Mathematical Programming, 70(1), 17–25. CrossRefGoogle Scholar
  12. Khachiyan, L., Boros, E., Borys, K., Elbassioni, K., & Gurvich, V. (2008). Generating all vertices of a polyhedron is hard. Discrete & Computational Geometry, 39(1–3), 174–190. CrossRefGoogle Scholar
  13. Lovász, L. (1992). Combinatorial optimization: some problems and trends (DIMACS Technical Report 92-53). Rutgers University. Google Scholar
  14. Papadimitriou, C. H., & Yannakakis, M. (1990). On recognizing integer polyhedra. Combinatorica 10(1), 107–109. CrossRefGoogle Scholar
  15. Provan, J. S. (1994). Efficient enumeration of the vertices of polyhedra associated with network LP’s. Mathematical Programming, 63(1), 47–64. CrossRefGoogle Scholar
  16. Read, R. C., & Tarjan, R. E. (1975). Bounds on backtrack algorithms for listing cycles, paths, and spanning trees. Networks, 5, 237–252. Google Scholar
  17. Schrijver, A. (1986). Theory of linear and integer programming. New York: Wiley. Google Scholar
  18. Vazirani, V. V. (2001). Approximation algorithms. Berlin: Springer. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Endre Boros
    • 1
  • Khaled Elbassioni
    • 2
  • Vladimir Gurvich
    • 1
  • Hans Raj Tiwary
    • 3
  1. 1.RUTCORRutgers UniversityPiscatawayUSA
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Technische Universität Berlin Fakultät II: Institut für MathematikBerlinGermany

Personalised recommendations