Generalized Nash Equilibrium Problems

Abstract

The Generalized Nash Equilibrium Problem is an important model that has its roots in the economic sciences but is being fruitfully used in many different fields. In this survey paper we aim at discussing its main properties and solution algorithms, pointing out what could be useful topics for future research in the field.

This is a preview of subscription content, log in to check access.

References

  1. Adida, E., & Perakis, G. (2006a). Dynamic pricing and inventory control: uncertainty and competition. Part B: an algorithm for the normalized Nash equilibrium. Operations Research Center, Sloan School of Management, MIT, Technical Report.

  2. Adida, E., & Perakis, G. (2006b). Dynamic pricing and inventory control: uncertainty and competition. Par A: existence of Nash equilibrium. Operations Research Center, Sloan School of Management, MIT, Technical Report.

  3. Altman, E., & Wynter, L. (2004). Equilibrium games, and pricing in transportation and telecommunication networks. Networks Spatial Economics, 4, 7–21.

    Article  Google Scholar 

  4. Altman, E., Pourtallier, O., Haurie, A., & Moresino, F. (2000). Approximating Nash equilibria in nonzero-sum games. International Game Theory Review, 2, 155–172.

    Google Scholar 

  5. Antipin, A. S. (2000a). Solution methods for variational inequalities with coupled constraints. Computational Mathematics and Mathematical Physics, 40, 1239–1254.

    Google Scholar 

  6. Antipin, A. S. (2000b). Solving variational inequalities with coupling constraints with the use of differential equations. Differential Equations, 36, 1587–1596.

    Article  Google Scholar 

  7. Antipin, A. S. (2001). Differential equations for equilibrium problems with coupled constraints. Nonlinear Analysis, 47, 1833–1844.

    Article  Google Scholar 

  8. Arrow, K. J., & Debreu, G. (1954). Existence of an equilibrium for a competitive economy. Econometrica, 22, 265–290.

    Article  Google Scholar 

  9. Aubin, J.-P. (1993). Optima and equilibria. Berlin, Heidelberg, New York: Springer.

    Google Scholar 

  10. Aubin, J.-P., & Frankowska, H. (1990). Set-valued analysis. Boston: Birkhäuser.

    Google Scholar 

  11. Başar, T., & Olsder, G. J. (1989). Dynamic noncooperative game theory (2nd edn.). London/New York: Academic Press. Reprinted in SIAM Series “Classics in Applied Mathematics”, 1999.

    Google Scholar 

  12. Bassanini, A., La Bella, A., & Nastasi, A. (2002). Allocation of railroad capacity under competition: a game theoretic approach to track time pricing. In M. Gendreau & P. Marcotte (Eds.), Transportation and networks analysis: current trends (pp. 1–17). Dordrecht: Kluwer Academic.

    Google Scholar 

  13. Baye, M. R., Tian, G., & Zhou, J. (1993). Characterization of existence of equilibria in games with discontinuous and non-quasiconcave payoffs. Review of Economic Studies, 60, 935–948.

    Article  Google Scholar 

  14. Bensoussan, A. (1974). Points de Nash dans le cas de fonctionnelles quadratiques et jeux differentiels lineaires a N personnes. SIAM Journal of Control and Optimization, 12, 460–499.

    Article  Google Scholar 

  15. Berinde, V. (2007). Iterative approximation of fixed points. In Lecture notes in mathematics : Vol. 1912 (2nd edn.). Berlin, Heidelberg: Springer.

    Google Scholar 

  16. Berridge, S., & Krawczyk, J. B. (1997). Relaxation algorithms in finding Nash equilibria. Economic working papers archives. http://econwpa.wustl.edu/eprints/comp/papers/9707/9707002.abs.

  17. Bertrand, J. (1883). Review of “Théorie mathématique de la richesse sociale” by Léon Walras and “Recherches sur les principes mathématiques de la théorie des richesses” by Augustin Cournot. Journal des Savants, 499–508.

  18. Breton, M., Zaccour, G., & Zahaf, M. (2005). A game-theoretic formulation of joint implementation of environmental projects. European Journal of Operational Research, 168, 221–239.

    Article  Google Scholar 

  19. Cavazzuti, E., & Pacchiarotti, N. (1986). Convergence of Nash equilibria. Bollettino Della Unione Matematica Italiana, 5-B, 247–266.

    Google Scholar 

  20. Cavazzuti, E., Pappalardo, M., & Passacantando, M. (2002). Nash equilibria, variational inequalities, and dynamical systems. Journal of Optimization Theory and Applications, 114, 491–506.

    Article  Google Scholar 

  21. Chan, D., & Pang, J.-S. (1982). The generalized quasi-variational inequality problem. Mathematics of Operations Research, 7, 211–222.

    Article  Google Scholar 

  22. Contreras, J., Klusch, M. K., & Krawczyk, J. B. (2004). Numerical solution to Nash-Cournot equilibria in coupled constraints electricity markets. IEEE Transactions on Power Systems, 19, 195–206.

    Article  Google Scholar 

  23. Cournot, A. A. (1838). Recherches sur les principes mathématiques de la théorie des richesses. Paris: Hachette

    Google Scholar 

  24. Dafermos, S. (1990). Exchange price equilibria and variational inequalities. Mathematical Programming, 46, 391–402.

    Article  Google Scholar 

  25. Dasgupta, P., & Maskin, E. (1986a). The existence of equilibrium in discontinuous economic games, I: theory. Review of Economic Studies, 53, 1–26.

    Article  Google Scholar 

  26. Dasgupta, P., & Maskin, E. (1986b). The existence of equilibrium in discontinuous economic games, II: applications. Review of Economic Studies, 53, 27–41.

    Article  Google Scholar 

  27. Debreu, G. (1952). A social equilibrium existence theorem. Proceedings of the National Academy of Sciences of the USA, 38, 886–893.

    Article  Google Scholar 

  28. Debreu, G. (1959). Theory of values. New Haven: Yale University Press.

    Google Scholar 

  29. Debreu, G. (1970). Economies with a finite set of equilibria. Econometrica, 38, 387–392.

    Article  Google Scholar 

  30. Dirkse, S. P., & Ferris, M. C. (1995). The PATH solver: a non-monotone stabilization scheme for mixed complementarity problems. Optimization Methods & Software, 5, 123–156.

    Article  Google Scholar 

  31. Dreves, A., & Kanzow, C. (2009). Nonsmooth optimization reformulations characterizing all solutions of jointly convex generalized Nash equilibrium problems (Technical Report). Institute of Mathematics, University of Würzburg, Würzburg, Germany.

  32. Ehrenmann, A. (2004). Equilibrium problems with equilibrium constraints and their application to electricity markets. Ph.D. Dissertation, Judge Institute of Management, The University of Cambridge, Cambridge, UK.

  33. Facchinei, F., & Kanzow, C. (2007). Generalized Nash equilibrium problems. 4OR, 5, 173–210.

    Article  Google Scholar 

  34. Facchinei, F., & Kanzow, C. (2009). Penalty methods for the solution of generalized Nash equilibrium problems (Technical Report). University of Würzburg, Würzburg, Germany.

  35. Facchinei, F., & Pang, J.-S. (2003). Finite-dimensional variational inequalities and complementarity problems. New York: Springer.

    Google Scholar 

  36. Facchinei, F., & Pang, J.-S. (2006). Exact penalty functions for generalized Nash problems. In G. Di Pillo & M. Roma (Eds.), Large-scale nonlinear optimization (pp. 115–126). Berlin: Springer.

    Google Scholar 

  37. Facchinei, F., & Pang, J.-S. (2009). Nash equilibria: the variational approach. In D. P. Palomar & Y. Eldar (Eds.), Convex optimization in signal processing and communications. Cambridge: Cambridge University Press (to appear).

    Google Scholar 

  38. Facchinei, F., Fischer, A., & Piccialli, V. (2007). On generalized Nash games and variational inequalities. Operations Research Letters, 35, 159–164.

    Article  Google Scholar 

  39. Facchinei, F., Fischer, A., & Piccialli, V. (2009a). Generalized Nash equilibrium problems and Newton methods. Mathematical Programming, 117, 163–194.

    Article  Google Scholar 

  40. Facchinei, F., Piccialli, V., & Sciandrone, M. (2009b). On a class of generalized Nash equilibrium problems. Computational Optimization and Applications (submitted).

  41. Flåm, S. D. (1993). Paths to constrained Nash equilibria. Applied Mathematics & Optimization, 27, 275–289.

    Article  Google Scholar 

  42. Flåm, S. D. (1994). On variational stability in competitive economies. Set-Valued Analysis, 2, 159–173.

    Article  Google Scholar 

  43. Flåm, S. D., & Ruszczyński, A. (1994). Noncooperative convex games: computing equilibrium by partial regularization. IIASA Working Paper, 94–42.

  44. Fudenberg, D., & Tirole, J. (1991). Game theory. Cambridge: MIT Press.

    Google Scholar 

  45. Fukushima, M. (2007). A class of gap functions for quasi-variational inequality problems. Journal of Industrial and Management Optimization, 3, 165–171.

    Article  Google Scholar 

  46. Fukushima, M., & Pang, J.-S. (2005). Quasi-variational inequalities, generalized Nash equilibria, and multi-leader-follower games. Computational Management Science, 2, 21–56.

    Article  Google Scholar 

  47. Gabriel, S., & Smeers, Y. (2006). Complementarity problems in restructured natural gas markets. In Lectures notes in economics and mathematical systems : Vol. 563. Recent advances in optimization (pp. 343–373). Berlin: Springer.

    Google Scholar 

  48. Gabriel, S. A., Kiet, S., & Zhuang, J. (2005). A mixed complementarity-based equilibrium model of natural gas markets. Operations Research, 53, 799–818.

    Article  Google Scholar 

  49. Garcia, C. B., & Zangwill, W. I. (1981). Pathways to solutions, fixed points, and equilibria. Englewood Cliffs: Prentice-Hill

    Google Scholar 

  50. Gürkan, G., & Pang, J.-S. (2009). Approximations of Nash equilibria. Mathematical Programming, 117, 223–253.

    Article  Google Scholar 

  51. Harker, P. T. (1991). Generalized Nash games and quasi-variational inequalities. European Journal of Operational Research, 54, 81–94.

    Article  Google Scholar 

  52. Harker, P. T., & Hong, S. (1994). Pricing of track time in railroad operations: an internal market approach. Transportation Research, Part B Methodological, 28, 197–212.

    Article  Google Scholar 

  53. Haurie, A., & Krawczyk, J.-B. (1997). Optimal charges on river effluent from lumped and distributed sources. Environmental Modeling and Assessment, 2, 93–106.

    Article  Google Scholar 

  54. Hobbs, B., Helman, U., & Pang, J.-S. (2001). Equilibrium market power modeling for large scale power systems. In IEEE power engineering society summer meeting, 2001 (pp. 558–563).

  55. Hobbs, B., & Pang, J.-S. (2007). Nash-Cournot equilibria in electric power markets with piecewise linear demand functions and joint constraints. Operations Research, 55, 113–127.

    Article  Google Scholar 

  56. Hotelling, H. (1929). Game theory for economic analysis. Economic Journal, 39, 41–47.

    Article  Google Scholar 

  57. Hu, X., & Ralph, D. (2006). Using EPECs to model bilevel games in restructured electricity markets with locational prices (Technical report CWPE 0619).

  58. Ichiishi, T. (1983). Game theory for economic analysis. New York: Academic Press.

    Google Scholar 

  59. Jiang, H. (2007). Network capacity management competition (Technical Report). Judge Business School at University of Cambridge, UK.

  60. Jofré, A., & Wets, R. J.-B. (2002). Continuity properties of Walras equilibrium points. Annals of Operation Research, 114, 229–243.

    Article  Google Scholar 

  61. Kesselman, A., Leonardi, S., & Bonifaci, V. (2005). Game-theoretic analysis of Internet switching with selfish users. In Lectures notes in computer science: Vol. 3828. Proceedings of the first international workshop on Internet and network economics, WINE 2005 (pp. 236–245). Berlin: Springer.

  62. Kočvara, M., & Outrata, J. V. (1995). On a class of quasi-variational inequalities. Optimization Methods & Software, 5, 275–295.

    Article  Google Scholar 

  63. Krawczyk, J. B. (2000). An open-loop Nash equilibrium in an environmental game with coupled constraints. In Proceedings of the 2000 symposium of the international society of dynamic games, 325339, Adelaide, South Australia.

  64. Krawczyk, J.-B. (2005). Coupled constraint Nash equilibria in environmental games. Resource and Energy Economics, 27, 157–181.

    Article  Google Scholar 

  65. Krawczyk, J.-B. (2007). Numerical solutions to coupled-constraint (or generalised Nash) equilibrium problems. Computational Management Science, 4, 183–204.

    Article  Google Scholar 

  66. Krawczyk, J.-B., & Uryasev, S. (2000). Relaxation algorithms to find Nash equilibria with economic applications. Environmental Modeling and Assessment, 5, 63–73.

    Article  Google Scholar 

  67. Laffont, J., & Laroque, G. (1976). Existence d’un équilibre général de concurrence imperfait: Une introduction. Econometrica, 44, 283–294.

    Article  Google Scholar 

  68. Leyffer, S., & Munson, T. (2005). Solving multi-leader-follower games. Argonne National Laboratory Preprint ANL/MCS-P1243-0405, Illinois, USA.

  69. Margiocco, M., Patrone, F., & Pusilli Chicco, L. (1997). A new approach to Tikhonov well-posedness for Nash equilibria. Optimization, 40, 385–400.

    Article  Google Scholar 

  70. Margiocco, M., Patrone, F., & Pusilli Chicco, L. (1999). Metric characterization of Tikhonov well-posedness in value. Journal of Optimization Theory and Applications, 100, 377–387.

    Article  Google Scholar 

  71. Margiocco, M., Patrone, F., & Pusilli Chicco, L. (2002). On the Tikhonov well-posedness of concave games and Cournot oligopoly games. Journal of Optimization Theory and Applications, 112, 361–379.

    Article  Google Scholar 

  72. Morgan, J., & Scalzo, V. (2004). Existence of equilibria in discontinuous abstract economies. Preprint 53-2004, Dipartimento di Matematica e Applicazioni R. Caccioppoli, Napoli.

  73. Morgan, J., & Scalzo, V. (2008). Variational stability of social Nash equilibria. International Game Theory Review, 10, 17–24.

    Article  Google Scholar 

  74. Munson, T. S., Facchinei, F., Ferris, M. C., Fischer, A., & Kanzow, C. (2001). The semismooth algorithm for large scale complementarity problems. INFORMS Journal on Computing, 13, 294–311.

    Article  Google Scholar 

  75. Myerson, R. B. (1991). Game theory. Analysis of conflict. Cambridge: Harvard University Press.

    Google Scholar 

  76. Nabetani, K., Tseng, P., & Fukushima, M. (2008). Parametrized variational inequality approaches to generalized Nash equilibrium problems with shared constraints (Technical Report). Department of Applied Mathematics and Physics, Graduate School of Informatics, Kyoto University, Japan.

  77. Nash, J. F. (1950). Equilibrium points in n-person games. Proceedings of the National Academy of Sciences of the USA, 36, 48–49.

    Article  Google Scholar 

  78. Nash, J. F. (1951). Non-cooperative games. Annals of Mathematics, 54, 286–295.

    Article  Google Scholar 

  79. Nikaido, H. (1975). Monopolistic competition and effective demand. Princeton: Princeton University Press.

    Google Scholar 

  80. Nikaido, H., & Isoda, K. (1955). Note on noncooperative convex games. Pacific Journal of Mathematics, 5, 807–815.

    Google Scholar 

  81. Nishimura, K., & Friedman, J. (1981). Existence of Nash equilibrium in n person games without quasi-concavity. International Economic Review, 22, 637–648.

    Article  Google Scholar 

  82. Outrata, J. V., Kočvara, M., & Zowe, J. (1998). Nonsmooth approach to optimization problems with equilibrium constraints. Dordrecht: Kluwer Academic.

    Google Scholar 

  83. Pang, J.-S. (2002). Computing generalized Nash equilibria. Manuscript, Department of Mathematical Sciences, The Johns Hopkins University.

  84. Pang, J.-S., & Qi, L. (1993). Nonsmooth equations: motivation and algorithms. SIAM Journal on Optimization, 3, 443–465.

    Article  Google Scholar 

  85. Pang, J.-S., & Yao, J.-C. (1995). On a generalization of a normal map and equation. SIAM Journal on Control and Optimization, 33, 168–184.

    Article  Google Scholar 

  86. Pang, J.-S., Scutari, G., Facchinei, F., & Wang, C. (2008). Distributed power allocation with rate constraints in Gaussian parallel interference channels. IEEE Transactions on Information Theory, 54, 3471–3489.

    Article  Google Scholar 

  87. Pang, J.-S., Scutari, G., Palomar, D. P., & Facchinei, F. (2009). Design of cognitive radio systems under temperature-interference constraints: a variational inequality approach. IEEE Transactions on Signal Processing (submitted).

  88. Puerto, J., Schöbel, A., & Schwarze, S. (2005). The path player game: introduction and equilibria. Preprint 2005-18, Göttingen Georg-August University, Göttingen, Germany.

  89. Qi, L. (1993). Convergence analysis of some algorithms for solving nonsmooth equations. Mathematics of Operations Research, 18, 227–244.

    Article  Google Scholar 

  90. Qi, L., & Sun, J. (1993). A nonsmooth version of Newton’s method. Mathematical Programming, 58, 353–367.

    Article  Google Scholar 

  91. Rao, S. S., Venkayya, V. B., & Khot, N. S. (1988). Game theory approach for the integrated design of structures and controls. AIAA Journal, 26, 463–469.

    Article  Google Scholar 

  92. Reny, P. J. (1999). On the existence of pure and mixed strategy Nash equilibria in discontinuous games. Econometrica, 67, 1026–1056.

    Article  Google Scholar 

  93. Robinson, S. M. (1993a). Shadow prices for measures of effectiveness. I. Linear model. Operations Research, 41, 518–535.

    Article  Google Scholar 

  94. Robinson, S. M. (1993b). Shadow prices for measures of effectiveness. II. General model. Operations Research, 41, 536–548.

    Article  Google Scholar 

  95. Rockafellar, R. T., & Wets, R. J.-B. (1998). Variational analysis. Berlin: Springer.

    Google Scholar 

  96. Rosen, J. B. (1965). Existence and uniqueness of equilibrium points for concave n-person games. Econometrica, 33, 520–534.

    Article  Google Scholar 

  97. Schmit, L. A. (1981). Structural synthesis—its genesis and development. AIAA Journal, 19, 1249–1263.

    Article  Google Scholar 

  98. Scotti, S. J. (1995). Structural design using equilibrium programming formulations. NASA Technical Memorandum 110175.

  99. Scutari, G., Palomar, D. P., Pang, J.-S., & Facchinei, F. (2009). Flexible design of cognitive radio wireless systems: from game theory to variational inequality theory. IEEE Signal Processing Magazine, 26, 107–123.

    Article  Google Scholar 

  100. Stoer, J., & Bulirsch, R. (2002). Introduction to numerical analysis (3rd edn.). New York: Springer.

    Google Scholar 

  101. Sun, L.-J., & Gao, Z.-Y. (2007). An equilibrium model for urban transit assignment based on game theory. European Journal of Operational Research, 181, 305–314.

    Article  Google Scholar 

  102. Tian, G., & Zhou, J. (1995). Transfer continuities, generalizations of the Weierstrass and maximum theorems: a full characterization. Journal of Mathematical Economics, 24, 281–303.

    Article  Google Scholar 

  103. Tidball, M., & Zaccour, G. (2005). An environmental game with coupling constraints. Environmental Modeling and Assessment, 10, 153–158.

    Article  Google Scholar 

  104. Uryasev, S., & Rubinstein, R. Y. (1994). On relaxation algorithms in computation of noncooperative equilibria. IEEE Transactions on Automatic Control, 39, 1263–1267.

    Article  Google Scholar 

  105. van Damme, E. (1996). Stability and perfection of Nash equilibria (2nd edn.). Berlin: Springer.

    Google Scholar 

  106. Vincent, T. L. (1983). Game theory as a design tool. ASME Journal of Mechanisms, Transmissions, and Automation in Design, 105, 165–170.

    Article  Google Scholar 

  107. Vives, X. (1994). Nash equilibrium with strategic complementarities. Journal of Mathematical Economics, 19, 305–321.

    Article  Google Scholar 

  108. von Heusinger, A., & Kanzow, C. (2008). SC1 optimization reformulations of the generalized Nash equilibrium problem. Optimization Methods & Software, 23, 953–973.

    Article  Google Scholar 

  109. von Heusinger, A., & Kanzow, C. (2009a). Optimization reformulations of the generalized Nash equilibrium problem using Nikaido-Isoda-type functions. Computational Optimization and Applications, 43, 353–377.

    Article  Google Scholar 

  110. von Heusinger, A., & Kanzow, C. (2009b). Relaxation methods for generalized Nash equilibrium problems with inexact line search. Journal of Optimization Theory and Applications, 143, 159–183.

    Article  Google Scholar 

  111. von Heusinger, A., Kanzow, C., & Fukushima, M. (2009). Newton’s method for computing a normalized equilibrium in the generalized Nash game through fixed point formulation (Technical Report). Institute of Mathematics, University of Würzburg, Würzburg, Germany.

  112. von Neumann, J. (1928). Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100, 295–320.

    Article  Google Scholar 

  113. von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press.

    Google Scholar 

  114. Walras, L. (1900). Éléments d’économie politique pure. Lausanne.

  115. Wei, J.-Y., & Smeers, Y. (1999). Spatial oligopolistic electricity models with Cournot generators and regulated transmission prices. Operations Research, 47, 102–112.

    Article  Google Scholar 

  116. Zhou, J., Lam, W. H. K., & Heydecker, B. G. (2005). The generalized Nash equilibrium model for oligopolistic transit market with elastic demand. Transportation Research, Part B Methodological, 39, 519–544.

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Francisco Facchinei.

Additional information

This is an updated version of the paper that appeared in 4OR, 5(3), 173–210 (2007).

The work of F. Facchinei has been partially supported by MIUR-PRIN 2005 n. 2005017083 Research Program “Innovative Problems and Methods in Nonlinear Optimization”.

The work of C. Kanzow has been partially supported by the program “Identification, Optimization and Control with Applications in Modern Technologies” of the Elite Network of Bavaria, Germany.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Facchinei, F., Kanzow, C. Generalized Nash Equilibrium Problems. Ann Oper Res 175, 177–211 (2010). https://doi.org/10.1007/s10479-009-0653-x

Download citation

  • Nash Equilibrium Problem
  • Pseudo game
  • Social equilibrium
  • Coupled constraints
  • Existence
  • Stability
  • Solution algorithm