Skip to main content
Log in

Combinatorial optimization and Green Logistics

  • Published:
Annals of Operations Research Aims and scope Submit manuscript

Abstract

The purpose of this paper is to introduce the area of Green Logistics and to describe some of the problems that arise in this subject which can be formulated as combinatorial optimization problems. The paper particularly considers the topics of reverse logistics, waste management and vehicle routing and scheduling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, Y., Mathur, K., & Salkin, H. M. (1989). A set-partitioning-based exact algorithm for the vehicle routing problem. Networks, 19, 731–749.

    Article  Google Scholar 

  • Aminu, U. F., & Eglese, R. W. (2006). A constraint programming approach to the Chinese postman problem with time windows. Computers & Operations Research, 33, 3423–3431.

    Article  Google Scholar 

  • Ammons, J. C., Realff, M. J., & Newton, D. (1999). Carpet recycling: Determining the reverse production system design. Journal of Polymer-Plastics Technology and Engineering, 38(3), 547–567.

    Article  Google Scholar 

  • Archetti, C., & Speranza, M. G. (2004). Vehicle routing in the 1-skip collection problem. Journal of the Operational Research Society, 55(7), 717–727.

    Article  Google Scholar 

  • Baldacci, R., & Maniezzo, V. (2006). Exact methods based on node-routing formulations for undirected arc-routing problems. Networks, 47, 52–60.

    Article  Google Scholar 

  • Barros, A. I., Dekker, R., & Scholten, V. (1998). A two-level network for recycling sand: A case study. European Journal of Operational Research, 110(2), 199–214.

    Article  Google Scholar 

  • Belenguera, J.-M., Benavent, E., Lacomme, P., & Prins, C. (2006). Lower and upper bounds for the mixed capacitated arc routing problem. Computers & Operations Research, 33, 3363–3383.

    Article  Google Scholar 

  • Benavent, E., Campos, V., & Corberán, A. (1992). The capacitated arc routing problem: Lower bounds. Networks, 22, 669–690.

    Article  Google Scholar 

  • Beullens, P., Muyldermans, L., Cattrysse, D., & Van Oudheusden, D. (2003). A guided local search heuristic for the capacitated arc routing problem. European Journal of Operational Research, 147, 629–643.

    Article  Google Scholar 

  • Bodin, L., Mingozzi, A., Baldacci, R., & Ball, M. (2000). The rollon-rolloff vehicle routing problem. Transportation Science, 34, 271–288.

    Article  Google Scholar 

  • Bramel, J., & Simchi-Levi, D. (1997). The logic of logistics: Theory, algorithms, and applications for logistics management. Berlin: Springer.

    Google Scholar 

  • Brandão, J., & Eglese, R. W. (2006, forthcoming). A deterministic tabu search algorithm for the capacitated arc routing problem. Computers & Operations Research. doi:10.106/j.cor.2006.07.007.

  • Chen, H. K., Hsueh, C. F., & Chang, M. S. (2005). The real-time time-dependent vehicle routing problem. Transportation Research Part E, Logistics and Transportation Review, 42(5), 383–408.

    Article  Google Scholar 

  • Chu, F., Labadi, N., & Prins, C. (2005). Heuristics for the periodic capacitated arc routing problem. Journal of Intelligent Manufacturing, 16(2), 243–251.

    Article  Google Scholar 

  • Chu, F., Labadi, N., & Prins, C. (2006). A scatter search for the periodic capacitated arc routing problem. European Journal of Operational Research, 169(2), 586–605.

    Article  Google Scholar 

  • Clarke, G., & Wright, J. W. (1964). Scheduling of vehicles from a central depot to a number of delivery points. Operations Research, 12(4), 568–581.

    Article  Google Scholar 

  • Cordeau, J.-F., Gendreau, M., Hertz, A., Laporte, G., & Sormany, J.-S. (2005). New heuristics for the vehicle routing problem. In A. Langevin & D. Riopel (Eds.), Logistics systems: Design and optimization (pp. 279–297). New York: Springer.

    Chapter  Google Scholar 

  • Cordeau, J.-F., & Laporte, G. (2004). Tabu search heuristics for the vehicle routing problem. In C. Rego & B. Alidaee (Eds.), Metaheuristic optimization via memory and evolution: Tabu search and scatter search (pp. 145–163). Boston: Kluwer.

    Google Scholar 

  • Dantzig, G. B., & Ramser, J. M. (1959). The truck dispatching problem. Management Science, 6, 81–91.

    Google Scholar 

  • De Brito, M. P., & Van Der Laan, E. A. (2003). Inventory management with returns: the impact of misinformation. Erasmus research institute series. Rotterdam: Erasmus University Rotterdam.

    Google Scholar 

  • De Meulemeester, L., Laporte, G., Louveaux, F. V., & Semet, F. (1997). Optimal sequencing of skip collections and deliveries. Journal of Operational Research Society, 48, 57–64.

    Google Scholar 

  • Dekker, R., Fleischmann, M., Inderfurth, K., & Van Wassenhove, L. N. (Eds.) (2004). Reverse logistics: Quantitative models for closed-loop supply chains. Berlin: Springer.

    Google Scholar 

  • Dellaert, N., & Jeunet, J. (2000). Solving large unconstrained multilevel lot-sizing problems using a hybrid genetic algorithm. International Journal of Production Research, 38(5), 1083–1099.

    Article  Google Scholar 

  • Donati, A., Gambardella, L., Casagrande, N., Rizzoli, A., & Montemanni, R. (2003). Time dependent vehicle routing problem with an ant colony system (Internal IDSIA report, IDSIA-02-03).

  • Dowlatshahi, S. (2000). Developing a theory of reverse logistics. Interfaces, 30(3), 143–155.

    Article  Google Scholar 

  • Dror, M. (Ed.) (2000). Arc routing: Theory solutions and applications. Boston: Kluwer.

    Google Scholar 

  • Eglese, R. W., & Li, L. Y. O. (1996). A tabu search based heuristic for arc routing with a capacity constraint and time deadline. In I. H. Osman & J. P. Kelly (Eds.), Metaheuristics: Theory and applications (pp. 633–650). Dordrecht: Kluwer.

    Google Scholar 

  • Eglese, R. W., Maden, W., & Slater, A. (2006). A Road Timetable to aid vehicle routing and scheduling. Computers & Operations Research, 33, 3508–3519.

    Article  Google Scholar 

  • Fleischmann, M. (2001). Quantitative models for reverse logistics. New York: Springer.

    Book  Google Scholar 

  • Fleischmann, M., Bloemhof-Ruwaard, J. M., Dekker, R., Van Der Laan, E. A., Van Nunen, J. A. E. E., & Van Wassenhove, L. N. (1997). Quantitative models for reverse logistics: A review. European Journal of Operational Research, 103, 1–17.

    Article  Google Scholar 

  • Fleischmann, M., Krikke, H. R., Dekker, R., & Flapper, S. D. P. (2000). A characterisation of logistics networks for product recovery. OMEGA—International Journal of Management Science, 28(6), 653–666.

    Article  Google Scholar 

  • Fu, L. P., & Rilett, L. R. (2000). Estimation of time-dependent, stochastic route travel times using artificial neural networks. Transportation Planning and Technology, 24(1), 25–48.

    Article  Google Scholar 

  • Fukasawa, R., Longo, H., Lysgaard, J., Poggi de Aragão, M., Reis, M., Uchoa, E., & Werneck, R. F. (2006). Robust branch-and-cut-and-price for the capacitated vehicle routing problem. Mathematical Programming, Series A and B, 106(3), 491–511.

    Article  Google Scholar 

  • Gendreau, M., Laporte, G., & Potvin, J.-Y. (2002). Metaheuristics for the capacitated VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem. SIAM monographs on discrete mathematics and applications (pp. 129–154). Philadelphia: SIAM.

    Chapter  Google Scholar 

  • Giannikos, I. (1998). A multi-objective programming model for locating treatment sites and routing hazardous wastes. European Journal of Operational Research, 104, 333–342.

    Article  Google Scholar 

  • Golden, B. L., & Assad, A. A. (1988). Vehicle routing: Methods and studies. Amsterdam: North-Holland.

    Google Scholar 

  • Golden, B. L., & Wong, R. T. (1981). Capacitated arc routing problems. Networks, 11, 305–315.

    Article  Google Scholar 

  • Golden, B. L., De Armon, J. S., & Baker, E. K. (1983). Computational experiments with algorithms for a class of routing problems. Computers & Operations Research, 10(1), 47–59.

    Article  Google Scholar 

  • Greistorfer, P. (2003). A tabu scatter search metaheuristic for the arc routing problem. Computers and Industrial Engineering, 44(2), 249–266.

    Article  Google Scholar 

  • Haghani, A., & Jung, S. (2005). A dynamic vehicle routing problem with time-dependent travel times. Computers & Operations Research, 32(11), 2959–2986.

    Article  Google Scholar 

  • Hertz, A., Laporte, G., & Mittaz, M. (2000). A tabu search heuristic for the capacitated arc routing problem. Operations Research, 48(1), 129–135.

    Article  Google Scholar 

  • Hertz, A., Laporte, G., & Mittaz, M. (2001). A variable neighborhood descent algorithm for the undirected capacitated arc routing problem. Transportation Science, 35, 425–434.

    Article  Google Scholar 

  • Hu, T.-L., Sheu, J.-B., & Huang, K.-H. (2002). A reverse logistics cost minimization model for the treatment of hazardous wastes. Transportation Research, Part E, Logistics and Transportation Review, 38, 457–473.

    Article  Google Scholar 

  • Jayaraman, V., Guide, Jr. V. D. R., & Srivastava, R. (1999). A closed-loop logistics model for remanufacturing. Journal of the Operational Research Society, 50(5), 497–508.

    Google Scholar 

  • Johnson, L. A., & Montgomery, D. C. (1974). Operations research in production planning, scheduling, and inventory control. New York: Wiley.

    Google Scholar 

  • Krikke, H. R. (1998). Recovery strategies and reverse logistic network design. Thesis, University of Twente, Enschede, The Netherlands.

  • Krikke, H. R., Van Harten, A., & Schuur, P. C. (1999). Business case Océ: reverse logistic network re-design for copiers. OR Spektrum, 21(3), 381–409.

    Google Scholar 

  • Krikke, H. R., Bloemhof-Ruwaard, J., & Van Wassenhove, L. (2001). Design of closed loop supply chains: A production and return network for refrigerators (Erim Report Series Research in Management, Ers-2001-45-Lis).

  • Kroon, L., & Vrijens, G. (1995). Returnable containers: An example of reverse logistics. International Journal of Physical Distribution and Logistics Management, 25(2), 56–68.

    Article  Google Scholar 

  • Lacomme, P., Prins, C., & Sevaux, M. (2003). Multiobjective capacitated arc routing problem. In C. Fonseca, P. J. Fleming, E. Zitzler, & T. Thiele (Eds.), LNCS : Vol. 2632. Proceedings evolutionary multi-criterion optimization: Second international conference, EMO 2003, Faro, Portugal, 8–11 April 2003 (pp. 550–564). Berlin: Springer.

    Chapter  Google Scholar 

  • Lacomme, P., Prins, C., & Ramdane-Cherif, W. (2004). Competitive memetic algorithms for arc routing problems. Annals of Operations Research, 131(1–4), 159–185.

    Article  Google Scholar 

  • Lacomme, P., Prins, C., & Ramdane-Cherif, W. (2005). Evolutionary algorithms for periodic arc routing problems. European Journal of Operational Research, 165(2), 535–553.

    Article  Google Scholar 

  • Laporte, G., & Nobert, Y. (1987). Exact algorithms for the vehicle routing problem. Annals of Discrete Mathematics, 31, 147–184.

    Google Scholar 

  • Laporte, G., & Semet, F. (2002). Classical heuristics for the capacitated VRP. In P. Toth & D. Vigo (Eds.), The vehicle routing problem. SIAM Monographs on discrete mathematics and applications (pp. 109–128). Philadelphia: SIAM.

    Chapter  Google Scholar 

  • Longo, H., Poggi de Aragão, M., & Uchoa, E. (2006). Solving capacitated arc routing problems using a transformation to the CVRP. Computers & Operations Research, 33, 1823–1837.

    Article  Google Scholar 

  • Lysgaard, J., Letchford, A. N., & Eglese, R. W. (2004). A new branch-and-cut algorithm for the capacitated vehicle routing problem. Mathematical Programming, 100, 423–445.

    Article  Google Scholar 

  • Maden, W. (2006). Models and heuristics algorithms for complex routing and scheduling problems. Ph.D dissertation, Department of Management Science, Lancaster University Management School, UK.

  • Malandraki, C., & Daskin, M. S. (1992). Time dependent vehicle routing problems: Formulations, properties and heuristic algorithms. Transportation Science, 26(3), 185–200.

    Article  Google Scholar 

  • Mansini, R., & Speranza, M. G. (1998). A linear programming model for the separate refuse collection service. Computers & Operations Research, 25(7/8), 659–673.

    Article  Google Scholar 

  • Marìn, A., & Pelegrìn, B. (1998). The return plant location problem: Modelling and resolution. European Journal of Operational Research, 104(2), 375–392.

    Article  Google Scholar 

  • Mondschein, S. V., & Schilkrut, A. (1997). Optimal investment policies for pollution control in the copper industry. Interfaces, 27(6), 69–87.

    Article  Google Scholar 

  • Moscato, P. (1999). Memetic algorithms: A short introduction. In D. Corne, M. Dorigo, & F. Glover (Eds.), New ideas in optimization (pp. 219–234). New York: McGraw-Hill.

    Google Scholar 

  • Mourão, M. C., & Almeida, T. (2000). Lower-bounding and heuristic methods for a refuse collection vehicle routing problem. European Journal of Operational Research, 121, 420–434.

    Article  Google Scholar 

  • Nema, A. K., & Gupta, S. K. (1999). Multiobjective risk analysis and optimization of regional hazardous waste management system. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 7, 69–77.

    Article  Google Scholar 

  • Nema, A. K., & Gupta, S. K. (2003). Optimization of regional hazardous waste management systems: an improved formulation. Waste Management, 19, 441–451.

    Article  Google Scholar 

  • OR/MS Today (2006). Vehicle routing software survey. http://www.lionhrtpub.com/orms/surveys/Vehicle_Routing/vrss.html.

  • Palmer, A. (2004). The environmental implications of grocery home delivery. Centre for Logistics and Supply Chain Management, Cranfield University, ELA Doctorate Workshop.

  • Pearn, W. L., Assad, A., & Golden, B. L. (1987). Transforming arc routing into node routing problems. Computers & Operations Research, 14, 285–288.

    Article  Google Scholar 

  • Peirce, J. J., & Davidson, G. M. (1982). Linear programming in hazardous waste management. Journal Environmental Engineering, 108(EE5), 1014–1026.

    Google Scholar 

  • Pronello, C., & André, M. (2000). Pollutant emissions estimation in road transport models (INRETS-LTE Report, Vol. 2007).

  • Rogers, D. S., & Tibben-Lembke, R. S. (1999). Going backwards: Reverse logistics trends and practices. Pittsburgh: Reverse Logistics Executive Council (RLEC).

    Google Scholar 

  • Sahoo, S., Kim, S., Kim, B., Kraas, B., & Popov, A. (2005). Routing optimization for waste management. Interfaces, 35(1), 24–36.

    Article  Google Scholar 

  • Sarkis, J. (2001). Greener manufacturing and operations from design to delivery and back. Sheffield: Greenleaf.

    Google Scholar 

  • Sbihi, A., & Eglese, R. W. (2007). Combinatorial optimization and Green logistics. 4OR: A Quarterly Journal of Operations Research, 5(2), 99–116.

    Article  Google Scholar 

  • Shih, L. H., & Lin, Y. T. (2003). Multicriteria optimization for infectious medical waste collection system planning. Practice Periodical of Hazardous, Toxic and Radioactive Waste Management, 7, 78–85.

    Article  Google Scholar 

  • Silver, E. A., & Meal, H. C. (1973). A heuristic for selecting lot size requirements for the case of a deterministic time-varying demand rate and discrete opportunities for replenishment. Production and Inventory Management, 14, 64–74.

    Google Scholar 

  • Silver, E. A., Pyke, D. F., & Peterson, R. (1996). Inventory management and production planning and scheduling (3 ed.). New York: Wiley.

    Google Scholar 

  • Spengler, T., Piichert, H., Penkuhn, T., & Rentz, O. (1997). Environmental integrated production and recycling management. European Journal of Operational Research, 97(2), 308–326.

    Article  Google Scholar 

  • Teixeira, J., Antunes, A. P., & de Sousa, J. P. (2004). Recyclable waste collection planning: a case study. European Journal of Operational Research, 158, 543–554.

    Article  Google Scholar 

  • Teunter, R. H., Bayindir, Z. P., & Van Den Heuvel, W. (2006). Dynamic lot sizing with product returns and remanufacturing. International Journal of Production Research, 44(20), 4377–4400.

    Article  Google Scholar 

  • Toth, P., & Vigo, D. (2001). The vehicle routing problem. SIAM monographs on discrete mathematics and applications. Philadelphia: SIAM.

    Google Scholar 

  • Ulusoy, G. (1985). The fleet size and mix problem for capacitated arc routing. European Journal of Operational Research, 22, 329–337.

    Article  Google Scholar 

  • Van Den Heuvel, W. (2004). On the complexity of the economic lot-sizing problem with remanufacturing options (Econometric Institute report. Technical Report EI 2004-46). Econometric Institute, Erasmus University Rotterdam, The Netherlands.

  • Wagner, H. M., & Whitin, T. M. (1958). A dynamic version of the economic lot size model. Management Science, 5, 86–96.

    Article  Google Scholar 

  • White, C. D., Masnet, E., Meisner Rosen, C., & Beckman, S. L. (2003). Product recovery with some byte: an overview of management challenges and environmental consequences in reverse manufacturing for the computer industry. Journal of Cleaner Production, 11, 445–458.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard W. Eglese.

Additional information

This paper appeared in 4OR, 5(2), 99–116 (2007).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sbihi, A., Eglese, R.W. Combinatorial optimization and Green Logistics. Ann Oper Res 175, 159–175 (2010). https://doi.org/10.1007/s10479-009-0651-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10479-009-0651-z

Keywords

Navigation