Annals of Operations Research

, Volume 175, Issue 1, pp 287–307 | Cite as

On the use of graphs in discrete tomography

  • Dominique de Werra
  • Marie-Christine Costa
  • C. Picouleau
  • Bernard Ries
Article

Abstract

In this tutorial paper, we consider the basic image reconstruction problem which stems from discrete tomography. We derive a graph theoretical model and we explore some variations and extensions of this model. This allows us to establish connections with scheduling and timetabling applications. The complexity status of these problems is studied and we exhibit some polynomially solvable cases. We show how various classical techniques of operations research like matching, 2-SAT, network flows are applied to derive some of these results.

Discrete tomography Complete bipartite graph Edge coloring Timetabling Constrained coloring Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahuja, R. K., Magnanti, T. L., & Orlin, J. B. (1993). Network flows. Englewood Cliffs: Prentice-Hall. Google Scholar
  2. Alfandari, L., Lemalade, J. L., Nagih, A., Plateau, G. (2009, in press). A MIP flow model for crop-rotation planning in a sustainable development context. Annals of Operations Research. Google Scholar
  3. Alpers, A., Rodek, L., Poulsen, H. F., Knudsen, E., & Herman, G. T. (2007). Discrete tomography for generating maps of polycrystals. In G. T. Herman & A. Kuba (Eds.), Advances in discrete tomography and its applications (pp. 271–301). Boston: Birkhäuser. CrossRefGoogle Scholar
  4. Aspvall, B., Plass, M. F., & Tarjan, R. (1979). A linear-time algorithm for testing the truth of certain quantified Boolean formulas. Information Processing Letters, 8, 121–123. CrossRefGoogle Scholar
  5. Batenburg, K. J. (2007). Network flow algorithms for discrete tomography. In G. T. Herman & A. Kuba (Eds.), Advances in discrete tomography and its applications (pp. 175–207). Boston: Birkhäuser. CrossRefGoogle Scholar
  6. Baumann, J., Kiss, Z., Krimmel, S., Kuba, A., Nagy, A., Rodek, L., Schillinger, B., & Stephan, J. (2007). Discrete tomography methods for nondestructive testing. In G. T. Herman & A. Kuba (Eds.), Advances in discrete tomography and its applications (pp. 303–332). Boston: Birkhäuser. CrossRefGoogle Scholar
  7. Bentz, C., Costa, M.-C., de Werra, D., Picouleau, C., & Ries, B. (2008). On a graph coloring problem arising from discrete tomography. Networks, 51(4), 256–267. CrossRefGoogle Scholar
  8. Bentz, C., Costa, M.-C., de Werra, D., Picouleau, C., & Ries, B. (2009). Degree-constrained edge partitioning in graphs arising from discrete tomography. Journal of Graph Algorithms and Applications, 13(2), 99–118. Google Scholar
  9. Berge, C. (1983). Graphes. Paris: Gauthier-Villars. Google Scholar
  10. Brocchi, S., Frosini, A., & Picouleau, C. (2008). Reconstruction of binary matrices under fixed size neighborhood constraints. Theoretical Computer Science, 406, 43–54. CrossRefGoogle Scholar
  11. Chrobak, M., & Dürr, C. (2001). Reconstructing polyatomic structures from X-rays: NP-completeness proof for three atoms. Theoretical Computer Science, 259(1), 81–98. CrossRefGoogle Scholar
  12. Costa, M.-C., de Werra, D., & Picouleau, C. (2006). Using graphs for some discrete tomography problems. Discrete Applied Mathematics, 154, 35–46. CrossRefGoogle Scholar
  13. Costa, M.-C., de Werra, D., Picouleau, C., & Schindl, D. (2005). A solvable case of image reconstruction in discrete tomography. Discrete Applied Mathematics, 148, 240–245. CrossRefGoogle Scholar
  14. de Werra, D., Costa, M.-C., Picouleau, C., & Ries, B. (2008). On the use of graphs in discrete tomography. 4OR, 6, 101–123. CrossRefGoogle Scholar
  15. Déroche, G. (1986). Guy Dupuy: sculpteur discret. Horizons d’Argonne, 52, 104–105. Google Scholar
  16. Déroche, G. (2003). Tomographie agricole des vallées de l’Aisne et de l’Aire. Horizons d’Argonne, 80, 17–20. Google Scholar
  17. Di Gesù, V., & Kuba, A. (Eds.) (2005). Special issue: IWCIA 2003, ninth international workshop on combinatorial image analysis. Discrete Applied Mathematics 151(3), 1–246. CrossRefGoogle Scholar
  18. Dürr, C., Guiñez, F., & Matamala, M. (2009). Reconstructing 3-colored grids from horizontal and vertical projections is NP-hard. Technical report. arXiv:0904.3169.
  19. Even, S., Itai, A., & Shamir, A. (1976). On the complexity of timetable and multicommodity flow problems. SIAM Journal on Computing, 5, 691–703. CrossRefGoogle Scholar
  20. Gabow, H., Nishizeki, T., Kariv, O., Leven, D., & Tereda, O. (1985). Algorithms for edge-coloring. Technical report 41/85, Tel Aviv University. Google Scholar
  21. Gardner, R. J. (2006). Geometric tomography (2nd ed.). New York: Cambridge University Press. Google Scholar
  22. Garey, M., & Johnson, D. S. (1979). Computer and intractability. San Francisco: Freeman. Google Scholar
  23. Hansen, P., & de Werra, D. (1997). Nesticity, DIMACS series. Discrete Mathematics and Theoretical Computer Science, 37, 225–232. Google Scholar
  24. Herman, G. T., & Kuba, A. (Eds.) (1999a). Discrete tomography: foundations, algorithms and applications. Boston: Birkhäuser. Google Scholar
  25. Herman, G. T., & Kuba, A. (1999b). Discrete tomography: a historical overview. In G. T. Herman, & A. Kuba (Eds.), Discrete tomography: foundations, algorithms and applications (pp. 3–34). Boston: Birkhäuser. Google Scholar
  26. Herman, G. T., & Kuba, A. (Eds.) (2007). Advances in discrete tomography and its applications. Boston: Birkhäuser. Google Scholar
  27. Holyer, I. (1981). NP-completeness of edge-coloring. SIAM Journal on Computing, 10, 718–720. CrossRefGoogle Scholar
  28. Kaneko, A., & Nagahama, R. (2006). Reconstruction algorithm and switching graph for two-projection tomography with prohibited subregion. In Proc. 13th international conference on discrete geometry for computer imagery (pp. 110–121). Szeged, Hungary. Google Scholar
  29. Lovasz, L., & Plummer, M. (1986). Matching theory. Amsterdam: North-Holland. Google Scholar
  30. Martinis, R., Socco, L. V., Sambuelli, L., Nicolotti, G., Schmitt, O., & Bucur, V. (2004). Tomographie ultrasonore pour les arbres sur pied. Annals of Forest Science, 61, 157–162. CrossRefGoogle Scholar
  31. Ryser, H. J. (1957). Combinatorial properties of matrices of zeros and ones. Canadian Journal of Mathematics, 9, 371–377. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Dominique de Werra
    • 1
  • Marie-Christine Costa
    • 2
  • C. Picouleau
    • 3
  • Bernard Ries
    • 4
  1. 1.EPFLLausanneSwitzerland
  2. 2.CEDRIC, ENSTAParisFrance
  3. 3.CEDRIC, CNAMParisFrance
  4. 4.Columbia University–IEORNew YorkUSA

Personalised recommendations