Annals of Operations Research

, Volume 183, Issue 1, pp 95–123 | Cite as

Hybrid scatter tabu search for unconstrained global optimization

  • Abraham Duarte
  • Rafael Martí
  • Fred Glover
  • Francisco Gortazar
Article

Abstract

The problem of finding a global optimum of an unconstrained multimodal function has been the subject of intensive study in recent years, giving rise to valuable advances in solution methods. We examine this problem within the framework of adaptive memory programming (AMP), focusing particularly on AMP strategies that derive from an integration of Scatter Search and Tabu Search. Computational comparisons involving 16 leading methods for multimodal function optimization, performed on a testbed of 64 problems widely used to calibrate the performance of such methods, disclose that our new Scatter Tabu Search (STS) procedure is competitive with the state-of-the-art methods in terms of the average optimality gap achieved.

Keywords

Adaptive memory programming Metaheuristics Hybridization 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Addis, B., & Leyffer, S. (2006). A trust-region algorithm for global optimization. Computational Optimization and Applications, 35, 287–304. CrossRefGoogle Scholar
  2. Addis, B., Locatelli, M., & Schoen, F. (2005). Local optima smoothing for global optimization. Optimization Methods and Software, 20, 417–437. CrossRefGoogle Scholar
  3. Auger, A., & Hansen, N. (2005a). A restart CMA evolution strategy with increasing population size. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 1769–1776). Google Scholar
  4. Auger, A., & Hansen, N. (2005b). Performance evaluation of an advanced local search evolutionary algorithm. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 1777–1784). Google Scholar
  5. Avriel, M. (1976). Nonlinear programming, analysis and methods. Prentice-Hall: Englewood Cliffs. Google Scholar
  6. Ballester, P. J., Stephenson, J., Carter, J. N., & Gallagher, K. (2005). Real-parameter optimization performance study on the CEC-2005 benchmark with SPC-PNX. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 498–505). Google Scholar
  7. Chelouah, R., & Siarry, P. (2005). A hybrid method combining continuous tabu search and Nelder-Mead simplex algorithms for the global optimization of multiminima functions. European Journal of Operational Research, 161, 636–654. CrossRefGoogle Scholar
  8. García-Martínez, C., & Lozano, M. (2005). Hybrid real-coded genetic algorithms with female and male differentiation. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 896–903). Google Scholar
  9. Glover, F. (1977). Heuristics for integer programming using surrogate constraints. Decision Sciences, 8, 156–166. CrossRefGoogle Scholar
  10. Glover, F. (1994). Tabu search for nonlinear and parametric optimization (with links to genetic algorithms). Discrete Applied Mathematics, 49, 231–255. CrossRefGoogle Scholar
  11. Glover, F. (1998). A template for scatter search and path relinking. In J. K. Hao, E. Lutton, E. Ronald, M. Schoenauer, & D. Snyers (Eds.), Lecture notes in computer science : Vol. 1363. Artificial evolution (pp. 13–54). Berlin: Springer. CrossRefGoogle Scholar
  12. Glover, F., & Laguna, M. (1997). Tabu search. Dordrecht: Kluwer Academic. Google Scholar
  13. Glover, F., Kuo, C. C., & Dhir, K. S. (1998). Heuristic algorithms for the maximum diversity problem. Journal of Information and Optimization Sciences, 19(1), 109–132. Google Scholar
  14. Glover, F., Laguna, M., & Martí, R. (2000). Fundamentals of scatter search and path relinking. Control and Cybernetics, 29(3), 653–684. Google Scholar
  15. Hansen, N. (2006). Compilation of results on the 2005 CEC benchmark function set (Technical report). CoLAB Institute of Computational Sciences ETH, Zurich. Google Scholar
  16. Hedar, A., & Fukushima, M. (2004). Heuristic pattern search and its hybridization with simulated annealing for nonlinear global optimization. Optimization Methods and Software, 19, 291–308. CrossRefGoogle Scholar
  17. Hedar, A., & Fukushima, M. (2006). Tabu search directed by direct search methods for nonlinear global optimization. European Journal of Operational Research, 170(2), 329–349. CrossRefGoogle Scholar
  18. Hirsch, M. J., Meneses, C. N., Pardalos, P. M., & Resende, M. G. C. (2007). Global optimization by continuous GRASP. Optimization Letters, 1(2), 201–212. CrossRefGoogle Scholar
  19. Huyer, W., & Neumaier, A. (1999). Global optimization by multilevel coordinate search. Journal of Global Optimization, 14, 331–355. CrossRefGoogle Scholar
  20. Hvattum, L.-M., & Glover, F. (2007). Finding local optima of high-dimensional functions using direct search methods. Research paper, Molde University College, Molde, Norway. Google Scholar
  21. Johnson, D. S. (2001). A theoretician’s guide to the experimental analysis of algorithms. AT&T Labs Research. http://www.research.att.com/~dsj/.
  22. Laguna, M., & Martí, R. (2003). Scatter search—methodology and implementations in C. Boston: Kluwer Academic. Google Scholar
  23. Laguna, M., & Martí, R. (2005). Experimental testing of advanced scatter search designs for global optimization of multimodal functions. Journal of Global Optimization, 33, 235–255. CrossRefGoogle Scholar
  24. Leary, R. H. (2000). Global optimization on funneling landscapes. Journal of Global Optimization, 18(4), 367–383. CrossRefGoogle Scholar
  25. Liang, J. J., & Suganthan, P. N. (2005). Dynamic multi-swarm particle swarm optimizer with local search. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 522–528). Google Scholar
  26. Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs (3rd ed.). Berlin: Springer. Google Scholar
  27. Molina, D., Herrera, F., & Lozano, M. (2005). Adaptive local search parameters for real-coded memetic algorithms. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 888–895). Google Scholar
  28. Nelder, J. A., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal, 7, 308–313. Google Scholar
  29. Posik, P. (2005). Real-parameter optimization using the mutation step co-evolution. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 872–879). Google Scholar
  30. Qin, A. K., & Suganthan, P. N. (2005). Self-adaptive differential evolution algorithm for numerical optimization. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 1785–1791). Google Scholar
  31. Rego, C. (2005). RAMP: a new metaheuristic framework for combinatorial optimization. In C. Rego & B. Alidaee (Eds.), Metaheuristic optimization via memory and evolution: tabu search and scatter search (pp. 441–460). Dordrecht: Kluwer Academic. CrossRefGoogle Scholar
  32. Rego, C., & Alidaee, B. (2005). Metaheuristic optimization via memory and evolution. Boston: Kluwer Academic. Google Scholar
  33. Resende, M. G. C., & Ribeiro, C. C. (2001). Greedy randomized adaptive search procedures. In F. Glover & G. Kochenberger (Eds.), State-of-the-art handbook in metaheuristics (pp. 219–250). Boston: Kluwer Academic. Google Scholar
  34. Rönkkönen, J., Kukkonen, S., & Price, K. V. (2005). Real-parameter optimization with differential evolution. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 506–513). Google Scholar
  35. Sinha, A., Tiwari, S., & Deb, K. (2005). A population-based, steady-state procedure for real-parameter optimization. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 514–521). Google Scholar
  36. Suganthan, P. N., Hansen, N., Liang, J. J., Deb, K., Chen, Y.-P., Auger, A., & Tiwari, S. (2005). Problem definitions and evaluation criteria for the CEC 2005 special session on real-parameter optimization (Technical report). Nanyang technological university of Singapore. Google Scholar
  37. Yuan, B., & Gallagher, M. (2005). Experimental results for the special session on real-parameter optimization at CEC 2005: a simple, continuous EDA. In Proceedings of 2005 IEEE congress on evolutionary computation (CEC’2005) (pp. 1792–1799). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Abraham Duarte
    • 1
  • Rafael Martí
    • 2
  • Fred Glover
    • 3
  • Francisco Gortazar
    • 1
  1. 1.Departamento de Ciencias de la Computación, E.T.S. Ingeniería InformáticaUniversidad Rey Juan CarlosMótolesSpain
  2. 2.Departamento de Estadística e Investigación Operativa, Facultad de MatemáticasUniversitat de ValènciaBurjassotSpain
  3. 3.University of Colorado and OptTek Systems, Inc.BoulderUSA

Personalised recommendations