Annals of Operations Research

, Volume 183, Issue 1, pp 143–161 | Cite as

A GRASP-based approach for technicians and interventions scheduling for telecommunications

  • Hideki Hashimoto
  • Sylvain BoussierEmail author
  • Michel Vasquez
  • Christophe Wilbaut


The Technicians and Interventions Scheduling Problem for Telecommunications embeds the scheduling of interventions, the assignment of teams to interventions and the assignment of technicians to teams. Every intervention is characterized, among other attributes, by a priority. The objective of this problem is to schedule interventions such that the interventions with the highest priority are scheduled at the earliest time possible while satisfying a set of constraints like the precedence between some interventions and the minimum number of technicians needed with the required skill levels for the intervention. We present a Greedy Randomized Adaptive Search Procedure (GRASP) for solving this problem. In the proposed implementation, we integrate learning to the GRASP framework in order to generate good-quality solutions using information brought by previous ones. We also compute lower bounds and present experimental results that validate the effectiveness of this approach.


Technicians and Intervention Scheduling GRASP Metaheuristics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Atkinson, J. B. (1998). A greedy randomized search heuristic for time-constrained vehicle scheduling and the incorporation of a learning strategy. Journal of the Operational Research Society, 49, 700–708. Google Scholar
  2. Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to algorithms (2nd ed.). Cambridge: MIT. Google Scholar
  3. Dutot, P.-F., & Laugier, A. (2005). Technicians and interventions scheduling for telecommunications (ROADEF challenge subject). Technical report, France Telecom R&D. Google Scholar
  4. Festa, P., & Resende, M. G. C. (2002). GRASP: An annotated bibliography. In C. C. Ribeiro & P. Hansen (Eds.), Essays and surveys in metaheuristics (pp. 325–367). Dordrecht: Kluwer. Google Scholar
  5. Fleurent, C., & Glover, F. (1999). Improved constructive multistart strategies for the quadratic assignment problem using adaptive memory. INFORMS Journal on Computing, 11, 198–204. CrossRefGoogle Scholar
  6. Kellerer, H., Pferschy, U., & Pisinger, D. (2004). Knapsack problems. Berlin: Springer. Google Scholar
  7. Lodi, A., Martello, S., & Vigo, D. (2004). Models and bounds for two-dimensional level packing problems. Journal of Combinatorial Optimization, 8, 363–379. CrossRefGoogle Scholar
  8. Pitsoulis, L., & Resende, M. (2001). Greedy randomized adaptive search procedures. Technical report, AT&T Labs Research. Google Scholar
  9. Resende, M. G. C., & Ribeiro, C. C. (1997). A GRASP for graph planarization. Networks, 29, 173–189. CrossRefGoogle Scholar
  10. Resende, M. G. C., & Ribeiro, C. C. (2003). Greedy randomized adaptive search procedures. In F. Glover & G. A. Kochenberger (Eds.), Handbook of metaheuristics (pp. 219–249). Dordrecht: Kluwer. Google Scholar
  11. Taillard, É. D., Gambardella, L. M., Gendreau, M., & Potvin, J.-Y. (2001). Adaptive memory programming: A unified view of metaheuristics. European Journal of Operational Research, 135, 1–16. CrossRefGoogle Scholar
  12. Xu, J., & Chiu, S. Y. (2001). Effective heuristic procedures for a field technician scheduling problem. Journal of Heuristics, 7, 495–509. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2009

Authors and Affiliations

  • Hideki Hashimoto
    • 1
  • Sylvain Boussier
    • 2
    Email author
  • Michel Vasquez
    • 3
  • Christophe Wilbaut
    • 4
  1. 1.Department of Industrial and Systems EngineeringChuo UniversityTokyoJapan
  2. 2.LIAUniversité d’Avignon et des Pays de VaucluseAvignon Cedex 9France
  3. 3.LGI2PÉcole des Mines d’Alès, Site EERIENimes cedex 1France
  4. 4.LAMIH-SIADE, UMR CNRS 8530Université de Valenciennes et du Hainaut-CambrésisValenciennes Cedex 9France

Personalised recommendations