Annals of Operations Research

, Volume 180, Issue 1, pp 265–282 | Cite as

Applying Local Rescheduling in response to schedule disruptions

  • Jürgen Kuster
  • Dietmar Jannach
  • Gerhard Friedrich
Article

Abstract

In realistic scenarios of disruption management the high number of potential options makes the provision of decision support—on how to get back on track—complex. It is thus desirable to reduce the size of the regarded problems by applying methods of partial rescheduling. As existing approaches (such as Affected Operations Rescheduling or Matchup Scheduling) mainly focus on production-specific problems, we propose Local Rescheduling (LRS) as a generic approach to partial rescheduling in this paper. It integrates previous research on partial rescheduling and local search in the context of complex project scheduling problems. LRS is based on the bidirectional incremental extension of a time window regarded for potential schedule modifications. Experiments show that LRS outperforms previous approaches.

Keywords

Local optimization Partial rescheduling Reactive scheduling Disruption management Extended Resource-Constrained Project Scheduling Problem 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abumaizar, R. J., & Svestka, J. A. (1997). Rescheduling job shops under random disruptions. International Journal of Production Research, 35(7), 2065–2082. CrossRefGoogle Scholar
  2. Akturk, M.S. & Gorgulu, E. (1999). Match-up scheduling under a machine breakdown. European Journal of Operational Research, 112(1), 81–97. CrossRefGoogle Scholar
  3. Artigues, C., Michelon, P., & Reusser, S. (2003). Insertion techniques for static and dynamic resource constrained project scheduling. European Journal of Operational Research, 149, 249–267. CrossRefGoogle Scholar
  4. Bean, J. C., Birge, J. R., Mittenthal, J., & Noon, C. E. (1991). Matchup scheduling with multiple resources, release dates and disruptions. Operations Research, 39(3), 470–483. CrossRefGoogle Scholar
  5. Błazewicz, J., Lenstra, J. K., & Rinnooy Kan, A. (1983). Scheduling projects to resource constraints: classification and complexity. Discrete Applied Mathematics, 5, 11–24. CrossRefGoogle Scholar
  6. Brucker, P., Drexl, A., Möhring, R., Neumann, K., & Pesch, E. (1999). Resource-constrained project scheduling: notation, classification, models, and methods. European Journal of Operational Research, 112, 3–41. CrossRefGoogle Scholar
  7. Clausen, J., Hansen, J., Larsen, J., & Larsen, A. (2001). Disruption management. ORMS Today, 28, 40–43. Google Scholar
  8. Cowling, P., Colledge, N., Dahal, K., & Remde, S. (2006). The trade off between diversity and quality for multi-objective workforce scheduling. In J. Gottlieb & G. Raidl (Eds.), Evolutionary computation in combinatorial optimization : Vol. 3906, LNCS (pp. 13–24). Berlin: Springer. CrossRefGoogle Scholar
  9. Debels, D., & Vanhoucke, M. (2007). A decomposition-based genetic algorithm for the Resource-Constrained Project-Scheduling Problem. Operations Research, 55(3), 457–469. CrossRefGoogle Scholar
  10. Elkhyari, A., Guéret, C., & Jussien, N. (2004). Constraint programming for dynamic scheduling problems. In H. Kise (Ed.), ISS’04 international scheduling symposium, 2004. Awaji: Japan Society of Mechanical Engineers. Google Scholar
  11. Hartmann, S. (1998). A competitive genetic algorithm for resource-constrained project scheduling. Naval Research Logistics, 45, 733–750. CrossRefGoogle Scholar
  12. Hartmann, S. (2001). Project scheduling with multiple modes: a genetic algorithm. Annals of Operations Research, 102, 111–135. CrossRefGoogle Scholar
  13. Herroelen, W., & Leus, R. (2004). Robust and reactive project scheduling: a review and classification of procedures. International Journal of Production Research, 42(8), 1599–1620. CrossRefGoogle Scholar
  14. Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainties: survey and research potentials. European Journal of Operational Research, 165(2), 289–306. CrossRefGoogle Scholar
  15. Huang, G. Q., Lau, J. S. K., Mak, K.-K. L., & Liang, L. (2006). Distributed supply-chain project rescheduling: part II—distributed affected operations rescheduling algorithm. International Journal of Production Research, 44, 1–25. CrossRefGoogle Scholar
  16. Jain, A. K., & Elmaraghy, H. A. (1997). Production scheduling/rescheduling in flexible manufacturing. International Journal of Production Research, 35(1), 281–309. CrossRefGoogle Scholar
  17. Kolisch, R., & Hartmann, S. (1999). Heuristic algorithms for solving the Resource-Constrained Project Scheduling Problem: classification and computational analysis. In J. Weglarz (Ed.), Project scheduling: recent models, algorithms, and applications. Google Scholar
  18. Kolisch, R., & Hartmann, S. (2006). Experimental investigation of heuristics for Resource-Constrained Project Scheduling: an update. European Journal of Operational Research, 174(1), 23–37. CrossRefGoogle Scholar
  19. Kolisch, R., Sprecher, A., & Drexl, A. (1995). Characterization and generation of a general class of Resource-Constrained Project Scheduling Problems. Management Science, 41, 1693–1703. CrossRefGoogle Scholar
  20. Kolisch, R., Schwindt, C., & Sprecher, A. (1999). Benchmark instances for project scheduling problems. In J. Weglarz (Ed.), Handbook on recent advances in project scheduling. Google Scholar
  21. Kuster, J., Jannach, D., & Friedrich, G. (2007). Handling alternative activities in Resource-Constrained Project Scheduling Problems. In M. Veloso (Ed.), IJCAI-07, proceedings of the twentieth international joint conference on artificial intelligence, 2007. Google Scholar
  22. Kuster, J., Jannach, D., & Friedrich, G. (2008). Extending the RCPSP for modeling and solving disruption management problems. Applied Intelligence (to appear). Google Scholar
  23. Laborie, P. (2003). Algorithms for propagating resource constraints in AI planning and scheduling: existing approaches and new results. Artificial Intelligence, 143(2), 151–188. CrossRefGoogle Scholar
  24. Laborie, P. (2005). Complete MCS-based search: application to resource constrained project scheduling. In L. Kaelbling & A. Saffiotti (Eds.), IJCAI-05, proceedings of the 19th international joint conference on artificial intelligence, 2005. Google Scholar
  25. Lambrechts, O., Demeulemeester, E., & Herroelen, W. (2008). Proactive and reactive strategies for Resource-Constrained Project Scheduling with uncertain resource availabilities. Journal of Scheduling, 11(2), 121–136. CrossRefGoogle Scholar
  26. Li, R.-K., Shyu, Y.-T., & Adiga, S. (1993). A heuristic rescheduling algorithm for computer-based production scheduling systems. International Journal of Production Research, 31(8), 1815–1826. CrossRefGoogle Scholar
  27. Mausser, H. E., & Lawrence, S. R. (1997). Exploiting block structure to improve resource-constrained project schedules. In I. H. Osman & J. P. Kelly (Eds.), Meta-heuristics: theory and applications (pp. 203–218). Google Scholar
  28. Palpant, M., Artigues, C., & Michelon, P. (2004). LSSPER: solving the Resource-Constrained Project Scheduling Problem with large neighbourhood search. Annals of Operations Research, 131(1–4), 237–257. CrossRefGoogle Scholar
  29. Policella, N., & Rasconi, R. (2005). Testsets generation for reactive scheduling. In Workshop on experimental analysis and benchmarks for AI algorithms, Ferrara, Italy, 2005. Google Scholar
  30. Smith, S. F. (1994). Reactive scheduling systems. In D. Brown & W. Scherer (Eds.), Intelligent scheduling systems. Google Scholar
  31. Sprecher, A. (2002). Network decomposition techniques for Resource-Constrained Project Scheduling. Journal of the Operational Research Society, 53(4), 405–414. CrossRefGoogle Scholar
  32. Viana, A., & de Sousa, J. P. (2000). Using metaheuristics in multiobjective Resource Constrained Project Scheduling. European Journal of Operational Research, 120(2), 359–374. CrossRefGoogle Scholar
  33. Vieira, G. E., Herrmann, J. W., & Lin, E. (2003). Rescheduling manufacturing systems: a framework of strategies, policies, and methods. Journal of Scheduling, 6(1), 39–62. CrossRefGoogle Scholar
  34. Wang, B., & Liu, T. (2006). Rolling partial rescheduling with efficiency and stability based on local search algorithm. In D.-S. Huang, K. Li, & G. W. Irwin (Eds.), Intelligent computing : Vol. 4113, LNCS (pp. 937–942). Berlin: Springer. CrossRefGoogle Scholar
  35. Wang, J. (2005). Constraint-based schedule repair for product development projects with time-limited constraints. International Journal of Production Economics, 95(3), 399–414. CrossRefGoogle Scholar
  36. Yu, G., & Qi, X. (2004). Disruption management: framework, models and applications. Singapore: World Scientific Publishing. CrossRefGoogle Scholar
  37. Zhu, G., Bard, J. F., & Yu, G. (2005). Disruption management for Resource-Constrained Project Scheduling. Journal of the Operational Research Society, 56, 365–381. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Jürgen Kuster
    • 1
  • Dietmar Jannach
    • 2
  • Gerhard Friedrich
    • 1
  1. 1.Institute for Applied InformaticsUniversity KlagenfurtKlagenfurtAustria
  2. 2.Department of Computer ScienceDortmund University of TechnologyDortmundGermany

Personalised recommendations