Annals of Operations Research

, Volume 193, Issue 1, pp 193–220 | Cite as

Multi-resource allocation in stochastic project scheduling

  • Wolfram Wiesemann
  • Daniel Kuhn
  • Berç Rustem


We propose a resource allocation model for project scheduling. Our model accommodates multiple resources and decision-dependent activity durations inspired by microeconomic theory. First, we elaborate a deterministic problem formulation. In a second stage, we enhance this model to account for uncertain problem parameters. Assuming that the first and second moments of these parameters are known, the stochastic model minimises an approximation of the value-at-risk of the project makespan. As a salient feature, our approach employs a scenario-free formulation which is based on normal approximations of the activity path durations. We extend our model to situations in which the moments of the random parameters are ambiguous and describe an iterative solution procedure. Extensive numerical results are provided.


Resource allocation problem Project scheduling Value-at-risk 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Alizadeh, F., & Goldfarb, D. (2003). Second-order cone programming. Mathematical Programming, 95(1), 3–51. CrossRefGoogle Scholar
  2. Artzner, P., Delbaen, F., Eber, J.-M., & Heath, D. (1999). Coherent measures of risk. Mathematical Finance, 9(3), 203–228. CrossRefGoogle Scholar
  3. Bazaraa, M. S., Sherali, H. D., & Shetty, C. M. (2006). Nonlinear programming—theory and algorithms (3rd ed.). New York: Wiley. CrossRefGoogle Scholar
  4. Ben-Tal, A., & Nemirovski, A. (1998). Robust convex optimization. Mathematics of Operations Research, 23(4), 769–805. CrossRefGoogle Scholar
  5. Berk, K. N. (1973). A central limit theorem for m-dependent random variables with unbounded m. The Annals of Probability, 1(2), 352–354. CrossRefGoogle Scholar
  6. Bertsimas, D., & Sim, M. (2007). Robust conic optimization. Mathematical Programming, 107(1), 5–36. CrossRefGoogle Scholar
  7. Calafiore, G., & Campi, M. C. (2005). Uncertain convex programs: Randomized solutions and confidence levels. Mathematical Programming, 102(1), 25–46. CrossRefGoogle Scholar
  8. Calafiore, G., & Campi, M. C. (2006). The scenario approach to robust control design. IEEE Transactions on Automatic Control, 51(5), 742–753. CrossRefGoogle Scholar
  9. Chen, X., Sim, M., & Sun, P. (2007). A robust optimization perspective on stochastic programming. Operations Research, 55(6), 1058–1071. CrossRefGoogle Scholar
  10. Cohen, I., Golany, B., & Shtub, A. (2007). The stochastic time-cost tradeoff problem: A robust optimization approach. Networks, 49(2), 175–188. CrossRefGoogle Scholar
  11. Deckro, R. F., Hebert, J. E., Verdini, W. A., Grimsrud, P. H., & Venkateshwar, S. (1995). Nonlinear time/cost tradeoff models in project management. Computers & Industrial Engineering, 28(2), 219–229. CrossRefGoogle Scholar
  12. Demeulemeester, E. L., Dodin, B., & Herroelen, W. (1993). A random activity network generator. Operations Research, 41(5), 972–980. CrossRefGoogle Scholar
  13. Demeulemeester, E. L., & Herroelen, W. S. (2002). Project scheduling—a research handbook. Dordrecht: Kluwer Academic. Google Scholar
  14. Eppstein, D. (1994). Finding the k shortest paths. In IEEE symposium on foundations of computer science (pp. 154–165). Google Scholar
  15. Erdoǧan, E., & Iyengar, G. (2007). On two-stage convex chance constrained problems. Mathematical Methods of Operations Research, 65(1), 115–140. CrossRefGoogle Scholar
  16. Fulkerson, D. R. (1961). A network flow computation for project cost curves. Management Science, 7(2), 167–178. CrossRefGoogle Scholar
  17. Goel, V., & Grossmann, I. E. (2006). A class of stochastic programs with decision dependent uncertainty. Mathematical Programming, 108(2–3), 355–394. CrossRefGoogle Scholar
  18. Henrion, R., & Strugarek, C. (2008). Convexity of chance constraints with independent random variables. Computational Optimization and Applications, 41(2), 263–276. CrossRefGoogle Scholar
  19. Herroelen, W. S., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165(2), 289–306. CrossRefGoogle Scholar
  20. Horst, R., Pardalos, P. M., & Thoai, N. V. (2000). Introduction to global optimization (2nd ed.). Dordrecht: Kluwer Academic. Google Scholar
  21. Jain, A. S., & Meeran, S. (1999). Deterministic job-shop scheduling: Past, present and future. European Journal of Operational Research, 113(2), 390–434. CrossRefGoogle Scholar
  22. Jonsbraten, T. W., Wets, R. J.-B., & Woodruff, D. L. (1998). A class of stochastic programs with decision dependent random elements. Annals of Operations Research, 82, 83–106. CrossRefGoogle Scholar
  23. Jørgensen, T., & Wallace, S. W. (2000). Improving project cost estimation by taking into account managerial flexibility. European Journal of Operational Research, 127(2), 239–251. CrossRefGoogle Scholar
  24. Kelley, J. E. (1961). Critical-path planning and scheduling: Mathematical basis. Operations Research, 9(3), 296–320. CrossRefGoogle Scholar
  25. Kim, S.-J., Boyd, S. P., Yun, S., Patil, D. D., & Horowitz, M. A. (2007). A heuristic for optimizing stochastic activity networks with applications to statistical digital circuit sizing. Optimization and Engineering, 8(4), 397–430. CrossRefGoogle Scholar
  26. Korski, J., Pfeuffer, F., & Klamroth, K. (2007). Biconvex sets and optimization with biconvex functions: A survey and extensions. Mathematical Methods of Operations Research, 66(3), 373–407. CrossRefGoogle Scholar
  27. Luedtke, J., & Ahmed, S. (2008). A sample approximation approach for optimization with probabilistic constraints. SIAM Journal on Optimization, 19(2), 674–699. CrossRefGoogle Scholar
  28. Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7(1), 77–91. CrossRefGoogle Scholar
  29. Mas-Colell, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. London: Oxford University Press. Google Scholar
  30. Nemirovski, A., & Shapiro, A. (2006a). Convex approximations of chance constrained programs. SIAM Journal on Optimization, 17(4), 969–996. CrossRefGoogle Scholar
  31. Nemirovski, A., & Shapiro, A. (2006b). Scenario approximations of chance constraints. In G. Calafiore & F. Dabbene (Eds.), Probabilistic and randomized methods for design under uncertainty (pp. 3–47). Berlin: Springer. CrossRefGoogle Scholar
  32. Neumann, K. (1999). Scheduling of projects with stochastic evolution structure. In J. Weglarz (Ed.), Project scheduling: recent models, algorithms, and applications (pp. 309–332). Dordrecht: Kluwer Academic. Google Scholar
  33. Petrov, V. V. (1975). Sums of independent random variables. Berlin: Springer. Google Scholar
  34. Pflug, G. C., & Wozabal, D. (2007). Ambiguity in portfolio selection. Quantitative Finance, 7(4), 435–442. CrossRefGoogle Scholar
  35. Prékopa, A. (1995). Stochastic programming. Dordrecht: Kluwer Academic. Google Scholar
  36. Rockafellar, R. T., & Uryasev, S. (2000). Optimization of conditional value-at-risk. Journal of Risk, 2(3), 21–41. Google Scholar
  37. Wang, W., & Ahmed, S. (2007). Sample average approximation of expected value constrained stochastic programs. Operations Research Letters, 36(5), 515–519. CrossRefGoogle Scholar
  38. Zhu, S.-S., & Fukushima, M. (2006). Worst-case conditional value-at-risk with application to robust portfolio management (Working Paper). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of ComputingImperial College of Science, Technology and MedicineLondonUK

Personalised recommendations