Annals of Operations Research

, Volume 176, Issue 1, pp 109–126 | Cite as

A new methodology for studying the equity premium

Article

Abstract

This paper provides a new framework for the derivation and estimation of consumption and equity premium functions. Applying duality in a dynamic context, we show that equity premium and consumption functions can be easily obtained from the indirect utility function. Our new framework, therefore, does not require explicit specification of underlying consumer preferences.

Using aggregate US data (1929–2000) we estimate the consumption and equity premium functions using a nonparametric technique. We find that the model does well in explaining the observed smooth consumption patterns and does reasonably well in explaining the high mean and volatility of equity premia.

Keywords

Consumption function Equity premium Moments 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alvarez, F., & Jermann, U. J. (2000). Using asset prices to measure the cost of business cycles (Mimeo). University of Chicago. Google Scholar
  2. Appelbaum, E. (1997). Duality in production theory under uncertainty (Discussion Paper). York University. Google Scholar
  3. Appelbaum, E. (2006). A framework for empirical applications of production theory expected utility. Journal of Economics and Business, 58(4), 290–303. CrossRefGoogle Scholar
  4. Appelbaum, E., & Ullah, A. (1997). Estimation of moments and production decisions under uncertainty. Review of Economics and Statistics. Google Scholar
  5. Baillie, R. T., & Myers, R. J. (1991). Bivariate GARCH estimation of optimal commodity futures hedge. Journal of Applied Econometrics, 16, 109–124. CrossRefGoogle Scholar
  6. Basu, P. (1993). Mean reversion in GNP and stock prices: an adjustment cost hypothesis. Kyklos, 46(1), 87–104. CrossRefGoogle Scholar
  7. Basu, P., Semenov, A., & Wada, K. (2008). Uninsurable risk and financial market puzzles (Working Paper). Durham University. Google Scholar
  8. Bera, A. K., & Higgins, M. L. (1993). Arch models: properties, estimation and testing. Journal of Economic Surveys, 7, 307–366. CrossRefGoogle Scholar
  9. Berg, C. (1963). Topological spaces. New York: MacMillan. Translated by Patterson. Google Scholar
  10. Bollerslev, T., Engle, R. F., & Wooldridge, J. M. (1988). A capital asset pricing model with time-varying covariances. Journal of Political Economy, 96, 116–131. CrossRefGoogle Scholar
  11. Campbell, J. Y. (1994a). Intertemporal asset prices without consumption data. American Economic Review, 83(3), 487–512. Google Scholar
  12. Campbell, J. Y. (1994b). Inspecting the mechanism: an analytical approach to stochastic growth models. Journal of Monetary Economics, 33(3), 463–506. CrossRefGoogle Scholar
  13. Campbell, J. Y., Lo, A., & Mackinlay, C. (1997). Econometrics of financial markets. Princeton: Princeton University Press. Google Scholar
  14. Cochrane, J., & Hansen, L. (1992). Asset pricing explorations in macroeconomics. In NBER macroeconomics annual 1992 (pp. 115–165). Cambridge: MIT Press. Google Scholar
  15. Deaton, A., & Muellbauer, J. (1992). Economics and consumer behavior. Cambridge: Cambridge University Press. Google Scholar
  16. Engle, R. F., Granger, C. W. J., & Kraft, D. F. (1984). Combining competing forecasts of inflation using a bivariate ARCH model. Journal of Economic Dynamics and Control, 8, 151–165. CrossRefGoogle Scholar
  17. Epstein, L. G., & Zin, S. E. (1991). Substitution, risk aversion, and the temporal behavior of consumption and asset returns: an empirical analysis. Journal of Political Economy, 99, 263–286. CrossRefGoogle Scholar
  18. Fan, J., & Gijbels, I. (1996). Local polynomial modelling and its applications. London: Chapman and Hall. Google Scholar
  19. Faugère, C., & Van Erlach, J. (2006). The equity premium: consistent with GDP growth and portfolio insurance. Financial Review, 41(4), 547–564. CrossRefGoogle Scholar
  20. Geweke, J. (2001). A note on some limitations of CRRA utility. Economics Letters, 71, 341–345. CrossRefGoogle Scholar
  21. Hansen, L. P. (1982). Large sample properties of generalized method of moments estimators. Econometrica, 50(3), 1029–1054. CrossRefGoogle Scholar
  22. Hansen, L. P., & Jagannathan, R. (1991). Implications of security market data for models of dynamic economies. Journal of Political Economy, 99, 225–262. CrossRefGoogle Scholar
  23. Ibbotson Associates (2002). Stocks, bonds and inflation—2002 yearbook. Chicago: Ibbotson Google Scholar
  24. Jagannathan, R., McGrattan, E. R., & Scherbina, A. (2000). The declining U.S. equity premium. Federal Reserve Bank of Minneapolis Quarterly Review, 24(4), 3–19. Google Scholar
  25. Kendall, M. G. (1969). The advanced theory of statistics (Vol. 1). New York: Hafner. Google Scholar
  26. Kocherlakota, N. R. (1996). The equity premium: it’s still a puzzle. Journal of Economic Literature, 34, 42–71. Google Scholar
  27. Kocherlakota, N. R., & Pistaferri, L. (2007). Asset pricing implications of Pareto optimality with private information (Working Paper). University of Minnesota. Google Scholar
  28. Kreps, D. M., & Porteus, E. L. (1978). Temporal resolution of uncertainty and dynamic choice theory. Econometrica, 46, 185–200. CrossRefGoogle Scholar
  29. Lettau, M., & Uhlig, H. (2002). Sharpe ratio and preferences: a parametric approach. Macroeconomic Dynamics, 6(2), 242–265. CrossRefGoogle Scholar
  30. Machina, M. (1984). Temporal risk and induced preferences. Journal of Economic Theory, 33, 199–231. CrossRefGoogle Scholar
  31. Mass-Collel, A., Whinston, M. D., & Green, J. R. (1995). Microeconomic theory. London: Oxford University Press. Google Scholar
  32. McGrattan, E. R., & Prescott, E. C. (2001). Taxes, regulations, and asset prices (Working Paper 610). Federal Reserve Bank of Minneapolis. Google Scholar
  33. Mehra, R. (2003). The equity premium: why is it a puzzle? Financial Analysts Journal, 59(1), 54–69. CrossRefGoogle Scholar
  34. Mehra, R., & Prescott, E. C. (1985). The equity premium puzzle. Journal of Monetary Economics, 24, 401–421. Google Scholar
  35. Pagan, A., & Ullah, A. (1999). Nonparametric econometrics. Cambridge: Cambridge University Press. CrossRefGoogle Scholar
  36. Racine, J. (2003). Portable nonparametric kernel estimation version 1.7.1. Department of Economic, Syracuse University. Google Scholar
  37. Reitz, T. (1988). The equity risk premium: a solution? Journal of Monetary Economics, 21, 117–132. CrossRefGoogle Scholar
  38. Roll, R., & Ross, S. A. (1983). An empirical investigation of arbitrage pricing theory. Journal of Finance, 35, 1073–1104. CrossRefGoogle Scholar
  39. Santos, M. (1991). Smoothness of the policy function in discrete time economic models. Econometrica, 59(5), 1365–1382. CrossRefGoogle Scholar
  40. Singh, R. S., & Tracy, D. S. (1977). Strongly consistent estimators of k-th order regression curves and rates of convergence. Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte Gebiete, 40, 339–348. CrossRefGoogle Scholar
  41. Singleton, J. C., & Wingender, J. (1986). Skewness persistence in common stock returns. Journal of Financial and Quantitative Analysis, 335–341. Google Scholar
  42. Treynor, J. I. (1994). The invisible cost of trading. Journal of Portfolio Management, 21, 71–78. CrossRefGoogle Scholar
  43. Ullah, A. (1988). Non-parametric estimation of econometric functionals. Canadian Journal of Economics, 21, 3. Google Scholar
  44. Wilks, S. S. (1964). Mathematical statistics. New York: Wiley. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Department of EconomicsYork UniversityTorontoCanada
  2. 2.Durham UniversityDurhamUK

Personalised recommendations