Advertisement

Annals of Operations Research

, Volume 190, Issue 1, pp 165–180 | Cite as

Crop rotation scheduling with adjacency constraints

  • Lana Mara Rodrigues dos SantosEmail author
  • Philippe Michelon
  • Marcos Nereu Arenales
  • Ricardo Henrique Silva Santos
Article

Abstract

In this article we propose a 0-1 optimization model to determine a crop rotation schedule for each plot in a cropping area. The rotations have the same duration in all the plots and the crops are selected to maximize plot occupation. The crops may have different production times and planting dates. The problem includes planting constraints for adjacent plots and also for sequences of crops in the rotations. Moreover, cultivating crops for green manuring and fallow periods are scheduled into each plot. As the model has, in general, a great number of constraints and variables, we propose a heuristics based on column generation. To evaluate the performance of the model and the method, computational experiments using real-world data were performed. The solutions obtained indicate that the method generates good results.

Keywords

Integer linear programming Crop rotation Column generation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altieri, M. A. (1995). Agroecology: the science of sustainable agriculture. Boulder: Westview Press. Google Scholar
  2. Clarke, H. R. (1989). Combinatorial aspects of cropping pattern selection in agriculture. European Journal of Operational Research, 40, 70–77. CrossRefGoogle Scholar
  3. Detlefsen, N., & Jensen, A. L. (2007). Modelling optimal crop sequences using network flows. Agricultural Systems, 94, 566–572. CrossRefGoogle Scholar
  4. Diestel, R. (2000). Graph theory. Graduate texts in mathematics. New York: Springer. Google Scholar
  5. Dogliotti, S., Rossing, W. A. H., & Van Ittersum, M. K. (2003). ROTAT, a tool for systematically generating crop rotations. European Journal of Agronomy, 19, 239–250. CrossRefGoogle Scholar
  6. Dogliotti, S., Rossing, W. A. H., & Van Ittersum, M. K. (2004). Systematic design and evaluation of crop rotations enhancing soil conservation, soil fertility and farm income: a case study for vegetable farms in South Uruguay. Agricultural Systems, 80, 277–302. CrossRefGoogle Scholar
  7. El-Nazer, T., & McCarl, B. A. (1986). The choice of crop rotation: a modeling approach and case study. American Journal of Agricultural Economics, 68(1), 127–136. CrossRefGoogle Scholar
  8. Filgueira, F. A. R. (2003). Novo manual de olericultura. Viçosa: UFV. Google Scholar
  9. Gliessman, S. R. (2000). Agroecology:ecological processes in sustainable agriculture. Ann Arbor Chelsea. Google Scholar
  10. Haneveld, W. K., & Stegeman, A. W. (2005). Crop succession requirements in agricultural production planning. European Journal of Operations Research, 166, 406–429. CrossRefGoogle Scholar
  11. Hildreth, C. G., & Reiter, S. (1949). On the choice of a crop rotation plan. In T. C. Koopmans (Ed.), Proceedings of the conference on linear programming held in Chicago (pp. 177–188). Google Scholar
  12. ILOG CPLEX 10.1 reference manual. 10.1. Copyright by ILOG, France, 2006. Google Scholar
  13. Santos, R. H. S. (2005). Olericultura orgânica. In P. C. R. Fontes (Ed.), Olericultura: teoria e prática (pp. 249–276). Viçosa: UFV. Cap. 18. Google Scholar
  14. Santos, L. M. R., Santos, R. H. S., Arenales, M. N., & Raggi, L. A. (2007). Um modelo para a pragramação derotação de culturas. Pesquisa Operacional, 27(3), 535–547. CrossRefGoogle Scholar
  15. Souza, J. L., & Resende, P. L. (2006). Manual de horticultura orgânica. Viçosa: Aprenda Fácil. Google Scholar
  16. Vandermeer, J. H. (1989). The ecology of intercropping. Cambridge: Cambridge University Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • Lana Mara Rodrigues dos Santos
    • 1
    Email author
  • Philippe Michelon
    • 2
  • Marcos Nereu Arenales
    • 1
  • Ricardo Henrique Silva Santos
    • 3
  1. 1.Instituto de Ciências Matemáticas e de ComputaçãoUniversidade de São PauloSão CarlosBrazil
  2. 2.Université d’Avignon et des pays du VaucluseAvignonFrance
  3. 3.Universidade Federal de ViçosaMinas GeraisBrazil

Personalised recommendations