Annals of Operations Research

, 166:243 | Cite as

On the existence of a minimum integer representation for weighted voting systems

Article

Abstract

A basic problem in the theory of simple games and other fields is to study whether a simple game (Boolean function) is weighted (linearly separable). A second related problem consists in studying whether a weighted game has a minimum integer realization. In this paper we simultaneously analyze both problems by using linear programming.

For less than 9 voters, we find that there are 154 weighted games without minimum integer realization, but all of them have minimum normalized realization. Isbell in 1958 was the first to find a weighted game without a minimum normalized realization, he needed to consider 12 voters to construct a game with such a property. The main result of this work proves the existence of weighted games with this property with less than 12 voters.

Keywords

Simple games Weighted voting games Minimal realizations Minimum realization Realizations with minimum sum 

References

  1. Bohosian, V., & Bruck, J. (2003). Algebraic techniques for constructing minimal weights threshold functions. SIAM Journal on Discrete Mathematics, 16, 114–126. CrossRefGoogle Scholar
  2. Brams, S. J., & Fishburn, P. C. (1976). Approval voting. American Political Science Review, 72, 831–847. Google Scholar
  3. Boros, E., Hammer, P. L., Ibaraki, T., & Kawakawi, K. (1991). Identifying 2-monotonic positive boolean functions in polynomial time. In W. L. Hsu & R. C. T. Lee (Eds.), LNCS: ISA’91 Algorithms (Vol. 557, pp. 104–115). Berlin: Springer. Google Scholar
  4. Boros, E., Hammer, P. L., Ibaraki, T., & Kawakawi, K. (1997). Polynomial time recognition of 2-monotonic positive functions given by an oracle. SIAM Journal of Computing, 26, 93–109. CrossRefGoogle Scholar
  5. Brams, S. J., Jr., & Straffin, P.D. (1979). Prisoners’ dilemma and the professional sports drafts. American Mathematical Monthly, 80, 80–88. CrossRefGoogle Scholar
  6. Carreras, F., & Freixas, J. (1996). Complete simple games. Mathematical Social Sciences, 32, 139–155. CrossRefGoogle Scholar
  7. Chavátal, V. (1983). Linear programming. New York: Freeman. Google Scholar
  8. Dubey, P., & Shapley, L. S. (1979). Mathematical properties of the Banzhaf power index. Mathematics of Operations Research, 4, 99–131. CrossRefGoogle Scholar
  9. Fishburn, P. C. (1969). Preference, summation, and social welfare functions. Management Science, 16, 179–186. CrossRefGoogle Scholar
  10. Fishburn, P. C. (1973). The theory of social choice. Princeton: Princeton University Press. Google Scholar
  11. Freixas, J., & Molinero, X. (2008, accepted). Simple games and weighted games: a theoretical and computational viewpoint. Discrete Applied Mathematics. Google Scholar
  12. Freixas, J., & Zwicker, W. S. (2003). Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 21, 399–431. CrossRefGoogle Scholar
  13. Glpk (gnu linear programming kit) package. (2005). URL:http://www.gnu.org/software/glpk/.
  14. Hammer, P. L., Kogan, A., & Rothblum, U. G. (2000). Evaluation, strength and relevance of boolean functions. SIAM Journal on Discrete Mathematics, 13, 302–312. CrossRefGoogle Scholar
  15. Hu, S. T. (1965). Threshold logic. USA: Univ. of California Press. Google Scholar
  16. Isbell, J. R. (1958). A class of simple games. Duke Mathematics Journal, 25, 423–439. CrossRefGoogle Scholar
  17. Isbell, J. R. (1959). On the enumeration of majority games. Mathematical Tables and Other Aids to Computation, 13, 21–28. CrossRefGoogle Scholar
  18. Krohn, I., & Sudhölter, P. (1995). Directed and weighted majority games. ZOR-Mathematical Methods of Operations Research, 42, 189–216. CrossRefGoogle Scholar
  19. Maple. (2005). URL: http://www.maplesoft.com/.
  20. Maschler, M., & Peleg, B. (1966). A characterization, existence proof, and dimension bounds for the kernel of a game. Pacific Journal of Mathematics, 18, 289–328. Google Scholar
  21. Muroga, S., Toda, I., & Kondo, M. (1962). Majority decision functions of up to six variables. Mathematics of Computation, 16, 459–472. CrossRefGoogle Scholar
  22. Muroga, S. (1971). Threshold logic and its applications. New York: Wiley. Google Scholar
  23. Von Neumann, J., & Morgenstern, O. (1944). Theory of games and economic behavior. Princeton: Princeton University Press. Google Scholar
  24. Ostmann, A. (1985). Decisions by players of comparable strength. Journal of Economics, 45, 267–284. Google Scholar
  25. Shapiro, J. F. (1979). Mathematical programming: structures and algorithms. New York: Wiley. Google Scholar
  26. Taylor, A. D. (1995). Mathematics and politics. New York: Springer. Google Scholar
  27. Taylor, A. D., & Zwicker, W. S. (1992). A characterization of weighted voting. Proceedings of the American Mathematical Society, 115, 1089–1094. CrossRefGoogle Scholar
  28. Taylor, A. D., & Zwicker, W. S. (1999). Simple games: desirability relations, trading, and pseudoweightings. New Jersey: Princeton University Press. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Dept. de Matemàtica Aplicada 3, Escola Politècnica Superior d’Enginyeria de ManresaUniversitat Politècnica de CatalunyaManresaSpain
  2. 2.Dept. de Llenguatges i Sistemes Informàtics, Escola Politècnica Superior d’Enginyeria de ManresaUniversitat Politècnica de CatalunyaManresaSpain

Personalised recommendations