Finding reliable solutions: event-driven probabilistic constraint programming

  • S. Armagan Tarim
  • Brahim Hnich
  • Steven Prestwich
  • Roberto Rossi
Article

Abstract

Real-life management decisions are usually made in uncertain environments, and decision support systems that ignore this uncertainty are unlikely to provide realistic guidance. We show that previous approaches fail to provide appropriate support for reasoning about reliability under uncertainty. We propose a new framework that addresses this issue by allowing logical dependencies between constraints. Reliability is then defined in terms of key constraints called “events”, which are related to other constraints via these dependencies. We illustrate our approach on three problems, contrast it with existing frameworks, and discuss future developments.

Keywords

Event-driven Probabilistic Constraint programming Uncertainty 

References

  1. Beck, J. C., & Wilson, N. (2007). Proactive algorithms for job shop scheduling with probabilistic durations. Journal of Artificial Intelligence Research, 28, 183–232. Google Scholar
  2. Bidot, J. (2005). A general framework integrating techniques for scheduling under uncertainty. Ph.D. thesis, Ecole Nationale d’Ingèieurs de Tarbes. Google Scholar
  3. Birge, J. R., & Louveaux, F. (1997). Introduction to Stochastic Programming. New York: Springer. Google Scholar
  4. Bistarelli, S., Montanari, U., & Rossi, F. (2002). Soft constraint logic programming and generalized shortest path problems. Journal of Heuristics, 8(1), 25–41. CrossRefGoogle Scholar
  5. Charnes, A., & Cooper, W. W. (1959). Chance-constrainted programming. Management Science, 6(1), 73–79. CrossRefGoogle Scholar
  6. Davenport, A., & Beck, J. C. (2000). A survey of techiniques for scheduling with uncertainty (Technical Report). Available at: http://www.tidel.mie.utoronto.ca/publications.php.
  7. de Kok, A. G., & Graves, S. C. (2003). Handbooks in operations research and management science: supply chain management: design, coordination and operation (Vol. 11). Amsterdam: Elsevier. CrossRefGoogle Scholar
  8. Fargier, H., Martin-Clouaire, R., Lang, J., & Schiex, T. (1995). A constraint satisfaction framework for decision under uncertainty. In Proceedings of the eleventh international conference on uncertainty in artificial intelligence, Montreal, Canada. Google Scholar
  9. Freuder, E. C., & Richard, J. W. (1992). Partial constraint satisfaction. Artificial Intelligence. Google Scholar
  10. Herroelen, W., & Leus, R. (2005). Project scheduling under uncertainty: Survey and research potentials. European Journal of Operational Research, 165, 289–306. CrossRefGoogle Scholar
  11. Hooker, J. N., Ottosson, G., Thorsteinsson, E. S., & Kim, H. J. (1999). On integrating constraint propagation and linear programming for combinatorial optimization. In Proceedings of the sixteenth national conference on artificial intelligence (pp. 136–141). Menlo Park/Cambridge: AAAI Press/MIT Press. Google Scholar
  12. Jain, V., & Grossmann, I. E. (2001). Algorithms for hybrid MILP/CP models for a class of optimization problems. INFORMS Journal on Computing, 13, 258–276. CrossRefGoogle Scholar
  13. Jeffreys, H. (1961). Theory of probability. Oxford: Clarendon. Google Scholar
  14. Kall, P., & Wallace, S. W. (1994). Stochastic programming. New York: Wiley. Google Scholar
  15. Kingsman, B. G. (1985). Raw materials purchasing: an operational research approach. Elmsford: Pergamon. Google Scholar
  16. Liu, B. (1995a). Dependent-chance goal programming: a class of stochastic programming (Technical Report). Institute of System Science, Chinese Academy of Sciences. Google Scholar
  17. Liu, B. (1995b). Dependent-chance goal programming and its genetic algorithm approach (Technical Report). Institute of System Science, Chinese Academy of Sciences. Google Scholar
  18. Liu, B. (1997). Dependent-chance programming: A class of stochastic optimization. Computers & Mathematics with Applications, 34, 89–104. CrossRefGoogle Scholar
  19. Liu, B. (1999). Uncertain programming. New York: Wiley. Google Scholar
  20. Liu, B., & Iwamura, K. (1997). Modelling stochastic decision systems using dependent-chance programming. European Journal of Operational Research, 101, 193–203. CrossRefGoogle Scholar
  21. Liu, B., & Ku, C. (1993). Dependent-chance goal programming and an application. Journal of Systems Engineering & Electronics, 4, 40–47. Google Scholar
  22. McKay, M. D., Beckman, R. J., & Conover, W. J. (1979). A comparison of three methods for selecting values of input variables in the analysis of output from a computer code. Technometrics, 21, 239–245. CrossRefGoogle Scholar
  23. Porteus, E. L. (2002). Foundations of stochastic inventory theory. Stanford: Stanford University Press. Google Scholar
  24. Sengupta, J. K. (1972). Stochastic programming: methods and applications. Amsterdam: North-Holland. Google Scholar
  25. Tarim, S. A., Manandhar, S., & Walsh, T. (2003). Scenario-based stochastic constraint programming. In Proceedings of the eighteenth international joint conference on artificial intelligence, Acapulco, Mexico (pp. 257–262). Google Scholar
  26. Tarim, S. A., Manandhar, S., & Walsh, T. (2006). Stochastic constraint programming: A scenario-based approach. Constraints, 11, 53–80. CrossRefGoogle Scholar
  27. Vajda, S. (1972). Probabilistic programming. San Diego: Academic Press. Google Scholar
  28. Wu, Y., Zhou, J., & Yang, J. (2005). Dependent-chance programming model for stochastic network bottleneck capacity expansion based on neural network and genetic algorithm. In Lecture notes in computer science : Vol. 3612. Advances in Natural Computation (pp. 120–128). Berlin: Springer. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  • S. Armagan Tarim
    • 1
  • Brahim Hnich
    • 2
  • Steven Prestwich
    • 3
  • Roberto Rossi
    • 3
    • 4
  1. 1.Department of ManagementHacettepe UniversityAnkaraTurkey
  2. 2.Faculty of Computer ScienceIzmir University of EconomicsIzmirTurkey
  3. 3.Cork Constraint Computation CentreUniversity CollegeCorkIreland
  4. 4.Centre for Telecommunication Value-Chain Driven ResearchDublinIreland

Personalised recommendations