Annals of Operations Research

, Volume 163, Issue 1, pp 177–196 | Cite as

Ordered sets with interval representation and (m,n)-Ferrers relation

  • Meltem ÖztürkEmail author


Semiorders may form the simplest class of ordered sets with a not necessarily transitive indifference relation. Their generalization has given birth to many other classes of ordered sets, each of them characterized by an interval representation, by the properties of its relations or by forbidden configurations. In this paper, we are interested in preference structures having an interval representation. For this purpose, we propose a general framework which makes use of n-point intervals and allows a systematic analysis of such structures. The case of 3-point intervals shows us that our framework generalizes the classification of Fishburn by defining new structures. Especially we define three classes of ordered sets having a non-transitive indifference relation. A simple generalization of these structures provides three ordered sets that we call “d-weak orders”, “d-interval orders” and “triangle orders”. We prove that these structures have an interval representation. We also establish some links between the relational and the forbidden mode by generalizing the definition of a Ferrers relation.


Preference modelling Intransitivity Interval representation m+n posets 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Armstrong, W. E. (1939). The determinateness of the utility function. The Economic Journal, 49, 453–467. CrossRefGoogle Scholar
  2. Baker, K. A., Fishburn, P. C., & Roberts, F. S. (1972). Partial orders of dimension 2. Networks, 2, 11–28. CrossRefGoogle Scholar
  3. Bogart, K. P., & Trenk, A. N. (1994). Bipartite tolerance orders. Discrete Mathematics, 132, 11–22. CrossRefGoogle Scholar
  4. Chipman, J. S. (1971). Consumption theory without transitive indifference. In J. S. Chipman, L. Hurwicz, M. K. Richter, & H. F. Sonnenschein (Eds.), Preferences, utility and demand (pp. 224–253). Harcourt Brace Jovanovich. Google Scholar
  5. Dushnik, B., & Miller, E. W. (1941). Partially ordered sets. American Journal of Mathematics, 63, 600–610. CrossRefGoogle Scholar
  6. Fechner, G. T. (1860). Elemente der Psychophysik. Breitkof und Hartel. Google Scholar
  7. Fishburn, P. C. (1970a). Intransitive indifference with unequal indifference intervals. Journal of Mathematical Psychology, 7, 144–149. CrossRefGoogle Scholar
  8. Fishburn, P. C. (1970b). Utility theory for decision making. New York: Wiley. Google Scholar
  9. Fishburn, P. C. (1985). Interval orders and interval graphs. New York: Wiley. Google Scholar
  10. Fishburn, P. C. (1997). Generalisations of semiorders: a review note. Journal of Mathematical Psychology, 41, 357–366. CrossRefGoogle Scholar
  11. Fishburn, P. C., & Monjardet, B. (1992). Wiener on the theory of measurement (1914, 1915, 1921). Journal of Mathematical Psychology, 36, 165–184. CrossRefGoogle Scholar
  12. Georgescu-Roegen, N. (1936). The pure theory of consumer’s behavior. Quarterly Journal of Economics, 50, 545–593. CrossRefGoogle Scholar
  13. Halphen, E. (1955). La notion de vraisemblance (Technical Report 4(1)). Publication de l’I.S.U. P. Google Scholar
  14. Luce, R. D. (1956). Semiorders and a theory of utility discrimination. Econometrica, 24, 178–191. CrossRefGoogle Scholar
  15. Monjardet, B. (1978). Axiomatiques et propriétés des quasi ordres. Mathématiques et Sciences Humaines, 63, 51–82. Google Scholar
  16. Öztürk, M. (2005). Mathematical and logical structures for interval comparison. PhD thesis, Université Paris Dauphine. Google Scholar
  17. Öztürk, M., & Tsoukiàs, A. (2006). Preference representation with 3-points intervals. In Proceedings of the ECAI-06 (pp. 417–421). Riva del Garda, Italy. August 28–September 1 2006. Google Scholar
  18. Pirlot, M., & Vincke, Ph. (1997). Semi Orders. Dordrecht: Kluwer Academic. Google Scholar
  19. Poincaré, H. (1905). La valeur de la science. Paris: Flammarion. Google Scholar
  20. Rabinovitch, I. (1978). The dimension of semiorders. Journal of Combinatorial Theory A, 25, 50–61. CrossRefGoogle Scholar
  21. Riguet, J. (1950). Sur les ensembles réguliers de rélations binaires, les relations de Ferrers. Comptes Rendus de l’Académie des Sciences, 231, 936–937. Google Scholar
  22. Scott, D., & Suppes, P. (1958). Foundational aspects of theories of measurement. Journal of Symbolic Logic, 23, 113–128. CrossRefGoogle Scholar
  23. Trenk, A. N. (1998). On k-weak orders: recognition and a tolerance result. Discrete Mathematics, 181, 223–237. CrossRefGoogle Scholar
  24. Trotter, W. T. (1992). Combinatorics and partially ordered sets. Baltimore: John Hopkins University Press. Google Scholar

Copyright information

© Springer Science + Business Media, LLC 2008

Authors and Affiliations

  1. 1.Université Lille-Nord de FranceLensFrance

Personalised recommendations