Annals of Operations Research

, Volume 165, Issue 1, pp 145–160 | Cite as

Pooling, pricing and trading of risks

  • Sjur Didrik Flåm


Exchange of risks is considered here as a transferable-utility, cooperative game, featuring risk averse players. Like in competitive equilibrium, a core solution is determined by shadow prices on state-dependent claims. And like in finance, no risk can properly be priced merely in terms of its marginal distribution. Pricing rather depends on the pooled risk and on the convolution of individual preferences. The paper elaborates on these features, placing emphasis on the role of prices and incompleteness. Some novelties come by bringing questions about existence, computation and uniqueness of solutions to revolve around standard Lagrangian duality. Especially outlined is how repeated bilateral trade may bring about a price-supported core allocation.


Cooperative game Transferable utility Core Risks Mutual insurance Contingent prices Bilateral exchange Supergradients Stochastic approximation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aumann, R. J., & Shapley, L. S. (1974). Values of non-atomic games. Princeton: Princeton University Press. Google Scholar
  2. Baton, B., & Lemaire, J. (1981). The core or a reinsurance market. ASTIN Bulletin, 12, 57–71. Google Scholar
  3. Benaim, M. (1996). A dynamical system approach to stochastic approximation. SIAM Journal on Control and Optimization, 34, 437–472. CrossRefGoogle Scholar
  4. Borch, K. (1962). Equilibrium in a reinsurance market. Econometrica, 30(3), 230–250. CrossRefGoogle Scholar
  5. Borwein, J. M., & Lewis, A. S. (2000). Convex analysis and nonlinear optimization. Berlin: Springer. Google Scholar
  6. Clarke, F. H., Ledyaev, Yu. S., Stern, R. J., & Wolenski, P. R. (1998). Nonsmooth analysis and control theory. Berlin: Springer. Google Scholar
  7. Duffie, D. (1987). Stochastic equilibria in incomplete financial markets. Journal of Economic Theory, 41, 405–416. CrossRefGoogle Scholar
  8. Einy, E., Moreno, D., & Shitovitz, B. (2000a). On the core of an economy with differential information. Journal of Economic Theory, 94, 262–270. CrossRefGoogle Scholar
  9. Einy, E., Moreno, D., & Shitovitz, B. (2000b). Rational expectations equilibria and the ex-post core of an economy with asymmetric information. Journal of Mathematical Economics, 34, 527–535. CrossRefGoogle Scholar
  10. Ermoliev, Y. M., & Wets, R. J.-B. (Eds.). (1988). Numerical techniques for stochastic optimization. Berlin: Springer. Google Scholar
  11. Evstigneev, I. V., & Flåm, S. D. (2001). Sharing nonconvex cost. Journal of Global Optimization, 20, 257–271. CrossRefGoogle Scholar
  12. Flåm, S. D. (2002). Stochastic programming, cooperation and risk exchange. Optimization Methods and Software, 17, 493–504. CrossRefGoogle Scholar
  13. Flåm, S. D., & Sandvik, B. (2000). Competitive equilibrium: Walras meets Darwin. Optimization, 47, 137–153. CrossRefGoogle Scholar
  14. Flåm, S. D., Owen, G., & Saboya, M. (2005). The not-quite non-atomic game: non-emptiness of the core in large production games. Mathematical Social Sciences, 50, 279–297. CrossRefGoogle Scholar
  15. Hammond, P. J. (1983). Overlapping expectations and Hart’s conditions for equilibrium in a securities model. Journal of Economic Theory, 31, 170–175. CrossRefGoogle Scholar
  16. Hart, O. D. (1974). On the existence of equilibrium in a securities model. Journal of Economic Theory, 9, 293–311. CrossRefGoogle Scholar
  17. Hart, O. D. (1975). On the optimality of equilibrium when the market structure is incomplete. Journal of Economic Theory, 11, 418–443. CrossRefGoogle Scholar
  18. Hart, S. (1974). Formation of cartels in large markets. Journal of Economic Theory, 7, 453–466. CrossRefGoogle Scholar
  19. Haurie, A. (1975). On some properties of the characteristic function and the core of multistage games of coalitions. IEEE Transactions Automatic Control, 20(2), 238–241. CrossRefGoogle Scholar
  20. Henriet, D., & Rochet, J.-C. (1991). Microeconomie de l’Assurance. Paris: Economica. Google Scholar
  21. Kobayashi, T. (1980). Equilibrium contracts for syndicates with differential information. Econometrica, 48(7), 1635–1665. CrossRefGoogle Scholar
  22. Laurent, P.-J. (1972). Approximation et optimisation. Paris: Hermann. Google Scholar
  23. Luenberger, D. G. (1969). Optimization by vector space methods. New York: Wiley. Google Scholar
  24. Magill, M., & Quinzii, M. (1996). Theory of incomplete markets. Cambridge: MIT Press. Google Scholar
  25. Milne, F. (1980). Short-selling, default risk and the existence of equilibrium in a securities model. International Economic Review, 21(2), 255–267. CrossRefGoogle Scholar
  26. Murota, K. (1998). Discrete convex analysis. Mathematical Programming, 83(2), 313–371. Google Scholar
  27. Negishi, T. (1962). The stability of a competitive economy: a survey article. Econometrica, 30, 635–669. CrossRefGoogle Scholar
  28. Owen, G. (1975). On the core of linear production games. Mathematical Programming, 9, 358–370. CrossRefGoogle Scholar
  29. Page, F. H. Jr. (1987). On equilibrium in Hart’s security exchange model. Journal of Economic Theory, 41, 392–404. CrossRefGoogle Scholar
  30. Rockafellar, R. T. (1970). Convex analysis. Princeton: Princeton University Press. Google Scholar
  31. Shapley, L. S., & Shubik, M. (1969). On market games. Journal of Economic Theory, 1, 9–25. CrossRefGoogle Scholar
  32. Sun, N., & Yang, Z. (2002). The max-convolution approach to equilibrium analysis, 341. Univ. of Bielefeld, Inst. Math. Econ. Google Scholar
  33. Wilson, R. (1967). Exchange equilibrium as a budgetary adjustment process. International Economic Review, 8(1), 103–107. CrossRefGoogle Scholar
  34. Wilson, R. (1968). The theory of syndicates. Econometrica, 36(1), 119–132. CrossRefGoogle Scholar
  35. Wilson, R. (1978). Information, efficiency, and the core of an economy. Econometrica, 46(4), 807–816. CrossRefGoogle Scholar
  36. Wooders, M. H. (1994). Equivalence of games and markets. Econometrica, 62, 1141–1160. CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2008

Authors and Affiliations

  1. 1.Bergen UniversityBergenNorway

Personalised recommendations