Annals of Operations Research

, Volume 159, Issue 1, pp 233–244 | Cite as

A Beam Search approach for the optimization version of the Car Sequencing Problem

  • Joaquín Bautista
  • Jordi Pereira
  • Belarmino Adenso-Díaz
Article

Abstract

The Car Sequencing Problem (CSP) is a feasibility problem that has attracted the attention of the Constraint Programming community for a number of years now. In this paper, a new version (opt-CSP) that extends the original problem is defined, converting this into an optimization problem in which the goal is to satisfy the typical hard constraints. This paper presents a solution procedure for opt-CSP using Beam Search. Computational results are presented using public instances that verify the goodness of the procedure and demonstrate its excellent performance in obtaining feasible solutions for the majority of instances while satisfying the new constraints.

Keywords

Car sequencing problem Beam search Scheduling 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bautista, J., Companys, R., & Corominas, A. (1996). Heuristics and exact algorithms for solving the Monden problem. European Journal of Operational Research, 88(1), 101–113. CrossRefGoogle Scholar
  2. Blum, C. (2005). Beam-ACO—hybridizing ant colony optimization with beam search: an application to open shop scheduling. Computers & Operations Research, 32(6), 1565–1591. CrossRefGoogle Scholar
  3. Butaru, M., & Habbas, Z. (2005). Solving the Car Sequencing Problem as a non-binary CSP. In P. van Beek (Ed.), Lecture notes in computer science : Vol. 3709. Principles and practice of constraint programming: CP2005 (p. 840). 11th international conference, Sitges, Spain, October 1–5 2005. Berlin: Springer. CrossRefGoogle Scholar
  4. Della Croce, F., Ghirardi, M., & Tadei, R. (2004). Recovering Beam Search: enhancing the beam search approach for combinatorial optimization problems. Journal of Heuristics, 10(1), 89–104. CrossRefGoogle Scholar
  5. Dincbas, M., Simonis, H., & van Hentenryck, P. (1988). Solving the car sequencing problem in constraint logic programming. In Proceedings of the 8th European conference on artificial intelligence, ECAI-88, Munich (pp. 290–295). London: Pitman. Google Scholar
  6. Drexl, A., Kimms, A., & Matthießen, L. (2006). Algorithms for the car sequencing and the level scheduling problem. Journal of Scheduling, 9(2), 153–176. CrossRefGoogle Scholar
  7. Gagné, C., Gravel, M., & Price, W. L. (2006). Solving real car sequencing problems with ant colony optimization. European Journal of Operational Research, 174, 1427–1448. CrossRefGoogle Scholar
  8. Gent, I. (1998). Two results on car-sequencing problems. Technical report APES-02-1998. Google Scholar
  9. Gottlieb, J., Puchta, M., & Solnon, C. (2003). A study of greedy, local search and ant colony optimization approaches for car sequencing problems. In S. Cagnori et al. (Eds.), Lecture notes in computer science : Vol. 2611. Applications of evolutionary computing (pp. 246–257). Berlin: Springer. CrossRefGoogle Scholar
  10. Gravel, M., Gagné, C., & Price, W. L. (2005). Review and comparison of three methods for the solution of the car sequencing problem. Journal of the Operational Research Society, 56(11), 1287–1295. CrossRefGoogle Scholar
  11. López, P., & Roubellat, F. (2001). Ordonnancement de la production. Paris: Hermès Science. Google Scholar
  12. Lowerre, B. T. (1976). The HARPY speech recognition system. Ph.D. thesis, Carnegie Mellon University, Pittsburgh. Google Scholar
  13. Monden, Y. (1983). Toyota production system. Norcross: Institute of Industrial Engineers Press. Google Scholar
  14. Morton, T. E., & Pentico, D. W. (1993). Heuristic scheduling systems. New York: Wiley. Google Scholar
  15. Ow, P. S., & Morton, T. E. (1988). Filtered beam search in scheduling. International Journal of Production Research, 26, 35–62. CrossRefGoogle Scholar
  16. Regin, J. C., & Puget, J. F. (1997). A filtering algorithm for global sequencing constraints. In Lecture notes in computer science : Vol. 1330. Principles and practice of constraint programming, CP-97 (pp. 32–46). Berlin: Springer. CrossRefGoogle Scholar
  17. Tsang, E. (1993). Foundations of constraint satisfaction. San Diego: Academic Press. Google Scholar
  18. Van Hentenryck, P., Simonis, H., & Dincbas, M. (1992). Constraint satisfaction using constraint logic programming. Artificial Intelligence, 58, 113–159. CrossRefGoogle Scholar
  19. Zufferey, N., Studer, M., & Silver, E. A. (2006). Tabu search for a car sequencing problem. In Proceedings of the 19 international Florida artificial intelligent research society conference, FALIRS 2006 (pp. 457–462). Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Joaquín Bautista
    • 1
  • Jordi Pereira
    • 2
  • Belarmino Adenso-Díaz
    • 3
  1. 1.Nissan Chair-UPC, Escuela Técnica Superior de Ingeniería Industrial de BarcelonaUniversidad Politécnica de CatalunyaBarcelonaSpain
  2. 2.Departamento de Organización de Empresas, Escuela Técnica Superior de Ingeniería Industrial de BarcelonaUniversidad Politécnica de CatalunyaBarcelonaSpain
  3. 3.Escuela Politécnica Superior de Ingeniería de Gijón, Campus de ViesquesUniversidad de OviedoGijónSpain

Personalised recommendations