Annals of Operations Research

, Volume 158, Issue 1, pp 99–115 | Cite as

The Shapley value for bicooperative games

  • J. M. Bilbao
  • J. R. Fernández
  • N. Jiménez
  • J. J. López
Article

Abstract

The aim of the present paper is to study a one-point solution concept for bicooperative games. For these games introduced by Bilbao (Cooperative Games on Combinatorial Structures, 2000) , we define a one-point solution called the Shapley value, since this value can be interpreted in a similar way to the classical Shapley value for cooperative games. The main result of the paper is an axiomatic characterization of this value.

Keywords

Bicooperative game Shapley value 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bilbao, J. M. (2000). Cooperative games on combinatorial structures. Boston: Kluwer Academic. Google Scholar
  2. Bilbao, J. M., Fernández, J. R., Jiménez, N., & López, J. J. (2006). Probabilistic values for bicooperative games. Working paper, University of Seville. Google Scholar
  3. Felsenthal, D., & Machover, M. (1997). Ternary voting games. International Journal of Game Theory, 26, 335–351. Google Scholar
  4. Freixas, J. (2005a). The Shapley–Shubik power index for games with several levels of approval in the input and output. Decision Support Systems, 39, 185–195. CrossRefGoogle Scholar
  5. Freixas, J. (2005b). Banzhaf measures for games with several levels of approval in the input and output. Annals of Operations Research, 137, 45–66. CrossRefGoogle Scholar
  6. Freixas, J., & Zwicker, W. S. (2003). Weighted voting, abstention, and multiple levels of approval. Social Choice and Welfare, 21, 399–431. CrossRefGoogle Scholar
  7. Grabisch, M., & Labreuche, C. (2002). Bi-capacities. Working paper, University of Paris VI. Google Scholar
  8. Shapley, L. S. (1953). A value for n-person games. In H. Kuhn & A. W. Tucker (Eds.), Contributions to the theory of games II (pp. 307–317). Princeton: Princeton University Press. Google Scholar
  9. Stanley, R. P. (1986). Enumerative combinatorics I. Monterey: Wadsworth. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • J. M. Bilbao
    • 1
  • J. R. Fernández
    • 1
  • N. Jiménez
    • 1
  • J. J. López
    • 1
  1. 1.Matemática Aplicada IIEscuela Superior de IngenierosSevillaSpain

Personalised recommendations