Advertisement

Annals of Operations Research

, Volume 156, Issue 1, pp 99–127 | Cite as

Memetic particle swarm optimization

  • Y. G. Petalas
  • K. E. Parsopoulos
  • M. N. VrahatisEmail author
Article

Abstract

We propose a new Memetic Particle Swarm Optimization scheme that incorporates local search techniques in the standard Particle Swarm Optimization algorithm, resulting in an efficient and effective optimization method, which is analyzed theoretically. The proposed algorithm is applied to different unconstrained, constrained, minimax and integer programming problems and the obtained results are compared to that of the global and local variants of Particle Swarm Optimization, justifying the superiority of the memetic approach.

Keywords

Global optimization Particle swarm optimization Memetic algorithms Local search 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abido, M. A. (2002). Optimal design of power system stabilizers using particle swarm optimization. IEEE Transactions on Energy Conversion, 17, 406–413. CrossRefGoogle Scholar
  2. Agrafiotis, D. K., & Cedeno, W. (2002). Feature selection for structure-activity correlation using binary particle swarms. Journal of Medicinal Chemistry, 45, 1098–1107. CrossRefGoogle Scholar
  3. Angeline, P. J. (1998). Evolutionary optimization versus particle swarm optimization: philosophy and performance differences. In V. W. Porto, N. Saravanan, D. Waagen & A. E. Eiben (Eds.), Evolutionary programming (Vol. VII, pp. 601–610). Berlin: Springer. CrossRefGoogle Scholar
  4. Bandler, J. W., & Charalambous, C. (1974). Nonlinear programming using minimax techniques. Journal of Optimization Theory and Applications, 13, 607–619. CrossRefGoogle Scholar
  5. Belew, R. K. (1990). Evolution, learning and culture: computational metaphores for adaptive algorithms. Complex Systems, 4, 11–49. Google Scholar
  6. Belew, R. K., McInerny, J., & Schraudolph, N. N. (1991). Evolving networks: using the genetic algorithm with connectionist learning. In C. Langton, C. Taylor, J. Farmer & S. Rasmussen (Eds.), Proceedings of the second conference in artificial life (pp. 511–548). Reading: Addison-Wesley. Google Scholar
  7. Clerc, M., & Kennedy, J. (2002). The particle swarm—explosion, stability, and convergence in a multidimensional complex space. IEEE Transactions on Evolutionary Computation, 6, 58–73. CrossRefGoogle Scholar
  8. Cockshott, A. R., & Hartman, B. E. (2001). Improving the fermentation medium for Echinocandin B production. Part II: particle swarm optimization. Process Biochemistry, 36, 661–669. CrossRefGoogle Scholar
  9. Dawkins, R. (1976). The selfish gene. New York: Oxford University Press. Google Scholar
  10. Floudas, C. A., & Pardalos, P. M. (1987). A collection of test problems for constrained global optimization algorithms. In P. M. Floudas (Ed.), Lecture notes in computer science, Vol. 455. Berlin: Springer. Google Scholar
  11. Fourie, P. C., & Groenwold, A. A. (2002). The particle swarm optimization algorithm in size and shape optimization. Structural and Multidisciplinary Optimization, 23, 259–267. CrossRefGoogle Scholar
  12. Geesing, R., & Stork, D. (1991). Evolution and learning in neural networks: the number and distribution of learning trials affect the rate of evolution. In R. Lippmann, J. Moody & D. and Touretzky (Eds.), NIPS 3 (pp. 804–810). San Mateo: Morgan Kaufmann. Google Scholar
  13. Glankwahmdee, A., Liebman, J. S., & Hogg, G. L. (1979). Unconstrained discrete nonlinear programming. Engineering Optimization, 4, 95–107. CrossRefGoogle Scholar
  14. Goldberg, D. (1989). Genetic algorithms in search, optimization, and machine learning. Reading: Addison-Wesley. Google Scholar
  15. Hart, W. E. (1994). Adaptive global optimization with local search. Ph.D. thesis, University of California, San Diego, USA. Google Scholar
  16. Himmelblau, D. M. (1972). Applied nonlinear programming. New York: McGraw-Hill. Google Scholar
  17. Hinton, G. E., & Nowlan, S. J. (1987). How learning can guide evolution. Complex Systems, 1, 495–502. Google Scholar
  18. Hock, W., & Schittkowski, K. (1981). Test examples for nonlinear programming codes. In Lecture notes in economics and mathematical systems (Vol. 187). Berlin: Springer. Google Scholar
  19. Holland, J. H. (1975). Adaptation in natural and artificial systems. Ann Arbor: Ann Arbor University Press. Google Scholar
  20. Homaifar, A., Lai, A. H. -Y., & Qi, X. (1994). Constrained optimization via genetic algorithms. Simulation, 2, 242–254. Google Scholar
  21. Hoos, H. H., & Stützle, T. (2004). Stochastic local search: foundations and applications. San Mateo: Morgan Kaufmann. Google Scholar
  22. Kennedy, J., & Eberhart, R. C. (2001). Swarm intelligence. San Mateo: Morgan Kaufmann. Google Scholar
  23. Krasnogor, N. (2002). Studies on the theory and design space of memetic algorithms. Ph.D. thesis, University of the West of England, Bristol, UK. Google Scholar
  24. Land, M. W. S. (1998). Evolutionary algorithms with local search for combinatorial optimization. Ph.D. thesis, University of California, San Diego, USA. Google Scholar
  25. Laskari, E. C., Parsopoulos, K. E., & Vrahatis, M. N. (2002). Particle swarm optimization for integer programming. In Proceedings of the IEEE 2002 congress on evolutionary computation (pp. 1576–1581). Hawaii (HI), USA. New York: IEEE Press. Google Scholar
  26. Lee, C. -Y., & Yao, X. (2004). Evolutionary programming using mutations based on the Lévy probability distribution. IEEE Transactions on Evolutionary Computation, 8, 1–13. CrossRefGoogle Scholar
  27. Lu, W. Z., Fan, H. Y., Leung, A. Y. T., & Wong, J. C. K. (2002). Analysis of pollutant levels in central Hong Kong applying neural network method with particle swarm optimization. Environmental Monitoring and Assessment, 79, 217–230. CrossRefGoogle Scholar
  28. Lukšan, L., & Vlček, J. (2000). Test problems for nonsmooth unconstrained and linearly constrained optimization. Technical report 798, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, Czech Republic. Google Scholar
  29. Matyas, J. (1965). Random optimization. Automatization and Remote Control, 26, 244–251. Google Scholar
  30. Merz, P. (1998). Memetic algorithms for combinatorial optimization. Fitness landscapes and effective search strategies. Ph.D. thesis, Department of Electrical Engineering and Computer Science, University of Siegen, Germany Google Scholar
  31. Michalewicz, Z. (1996). Genetic algorithms + data structures = evolution programs. Berlin: Springer. Google Scholar
  32. Moscato, P. (1989). On evolution, search, optimization, genetic algorithms and martial arts. Towards memetic algorithms. Technical report C3P, Report 826, Caltech Concurrent Computation Program, California, USA Google Scholar
  33. Moscato, P. (1999). Memetic algorithms. A short introduction. In D. Corne, M. Dorigo & F. and Glover (Eds.), New ideas in optimization (pp. 219–235). London: McGraw-Hill. Google Scholar
  34. Muhlenbein, M., Gorges Schleiter, M., & Kramer, O. (1988). Evolution algorithms in combinatorial optimization. Parallel Computing, 7, 65–85. CrossRefGoogle Scholar
  35. Ourique, C. O., Biscaia, E. C., & Carlos Pinto, J. (2002). The use of particle swarm optimization for dynamical analysis in chemical processes. Computers and Chemical Engineering, 26, 1783–1793. CrossRefGoogle Scholar
  36. Papageorgiou, E. I., Parsopoulos, K. E., Groumpos, P. P., & Vrahatis, M. N. (2004). Fuzzy cognitive maps learning through swarm intelligence. In: Lecture notes in computer science (Vol. 3070, pp. 344–349). Berlin: Springer. Google Scholar
  37. Parsopoulos, K. E., & Vrahatis, M. N. (2002a). Initializing the particle swarm optimizer using the nonlinear simplex method. In A. Grmela & N. Mastorakis (eds.) Advances in intelligent systems, fuzzy systems, evolutionary computation (pp. 216–221). WSEAS Press. Google Scholar
  38. Parsopoulos, K. E., & Vrahatis, M. N. (2002b). Particle swarm optimization method for constrained optimization problems. In P. Sincak, J. Vascak, V. Kvasnicka & J. and Pospichal (Eds.), Intelligent technologies–theory and application (New trends in intelligent technologies). Frontiers in artificial intelligence and applications (Vol. 76, pp. 214–220). Amsterdam: IOS Press. Google Scholar
  39. Parsopoulos, K. E., & Vrahatis, M. N. (2002c). Recent approaches to global optimization problems through particle swarm optimization. Natural Computing, 1, 235–306. CrossRefGoogle Scholar
  40. Parsopoulos, K. E., & Vrahatis, M. N. (2004). On the Computation of all global minimizers through particle swarm optimization. IEEE Transactions on Evolutionary Computation, 8, 211–224. CrossRefGoogle Scholar
  41. Parsopoulos, K. E., Papageorgiou, E. I., Groumpos, P. P., & Vrahatis, M. N. (2004). Evolutionary computation techniques for optimizing fuzzy cognitive maps in radiation therapy systems. In Lecture notes in computer science (Vol. 3102, pp. 402–413). Berlin: Springer. Google Scholar
  42. Petalas, Y. G., & Vrahatis, M. N. (2004a). Memetic algorithms for neural network training in bioinformatics. In European symposium on intelligent technologies, hybrid systems and their implementation on smart adaptive systems (EUNITE 2004) (pp. 41–46). Aachen, Germany. Google Scholar
  43. Petalas, Y. G., & Vrahatis, M. N. (2004b). Memetic algorithms for neural network training on medical data. In Fourth European symposium on biomedical engineering, Patras, Greece. Google Scholar
  44. Rao, S. S. (1992). Optimization: theory and applications. New Dehli: Wiley Eastern. Google Scholar
  45. Ray, T., & Liew, K. M. (2002). A swarm metaphor for multiobjective design optimization. Engineering Optimization, 34(2), 141–153. CrossRefGoogle Scholar
  46. Rüdolph, G. (1994). An evolutionary algorithm for integer programming. In Y. Davidor, H.-P. Schwefel & R. Männer (Eds.), Parallel problem solving from nature (Vol. 3, pp. 139–148). Berlin: Springer. Google Scholar
  47. Saldam, A., Ahmad, I., & Al-Madani, S. (2002). Particle swarm optimization for task assignment problem. Microprocessors and Microsystems, 26, 363–371. CrossRefGoogle Scholar
  48. Schwefel, H. -P. (1995). Evolution and optimum seeking. New York: Wiley. Google Scholar
  49. Storn, R., & Price, K. (1997). Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces. Journal of Global Optimization, 11, 341–359. CrossRefGoogle Scholar
  50. Trelea, I. C. (2003). The particle swarm optimization algorithm. Convergence analysis and parameter selection. Information Processing Letters, 85, 317–325. CrossRefGoogle Scholar
  51. Xu, S. (2001). Smoothing method for minimax problems. Computational Optimization and Applications, 20, 267–279. CrossRefGoogle Scholar
  52. Yang, J.-M., Chen, Y.-P., Horng, J.-T., & Kao, C.-Y. (1997). Applying family competition to evolution strategies for constrained optimization. In Lecture Notes in Mathematics (Vol. 1213, pp. 201–211). New York: Springer. Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2007

Authors and Affiliations

  • Y. G. Petalas
    • 1
  • K. E. Parsopoulos
    • 1
  • M. N. Vrahatis
    • 1
    Email author
  1. 1.Computational Intelligence Laboratory (CI Lab), Department of Mathematics, University of Patras Artificial Intelligence Research Center (UPAIRC)University of PatrasPatrasGreece

Personalised recommendations